**Dibrugarh University** 

## ডিব্রুগড় বিশ্ববিদ্যালয়



# Board of Studies Centre for Biotechnology and Bioinformatics জৈৱপ্ৰযুক্তি আৰু জৈৱতথ্যপ্ৰযুক্তি কেন্দ্ৰ

## **Syllabus**

for

### Four Years Undergraduate Programme

in

Biotechnology and Bioinformatics (Single Major)

> Approved by BoS, Biotechnology and Bioinformatics, Dibrugarh University Dated:08/05/2024

#### Dibrugarh University ডিব্রুগড় বিশ্ববিদ্যালয়

| Vision of University:  | To develop human resource by integrating knowledge and skill, human values and compassion for a better world.                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mission of University: | To impart value oriented education and skill based training that foster<br>leadership traits of the learners, thus generating sustainable development,<br>social harmony and peace. |

#### Centre for Biotechnology and Bioinformatics জৈৱপ্রযুক্তি আৰু জৈরতথ্যপ্রযুক্তি কেন্দ্র

# **Vision of Centre:** Promote socio-economic growth by fostering bio-entrepreneurship and training skilled professionals to meet biotechnology needs, supporting regional exploration, conservation, and biodiversity.

#### Mission of Centre:

- Provide comprehensive support including resources, mentorship, and training to foster the growth of innovative biotech startups, encouraging entrepreneurship in the field.
- Deliver high-quality education and research opportunities in biotechnology and related fields, equipping students and professionals with the skills and knowledge necessary for academic, research, and industrial success.
- Promote environmental sustainability and biodiversity through active conservation initiatives, contributing to the region's ecological health and resilience.

#### **Program Educational Objectives (PEOs):**

- **PEO1:** Graduates will have the knowledge and skills to pursue successful careers in diverse sectors such as biotechnology, pharmaceuticals, healthcare, agriculture, bioinformatics, and related industries.
- **PEO2:** Graduates will be prepared to engage in research and innovation, contributing to the advancement of knowledge and the development of new technologies in biotechnology, bioinformatics, and allied fields.
- **PEO3:** Graduates will demonstrate leadership, communication, and teamwork skills, enabling them to excel in their chosen professions and adapt to evolving trends and technologies in biotechnology and bioinformatics.

- **PEO4:** Graduates will understand the ethical implications of biotechnological and bioinformatics practices and demonstrate a commitment to socially responsible and sustainable approaches in their work.
- **PEO5:** Graduates will have the entrepreneurial mindset and capabilities to identify opportunities, innovate, and potentially establish their ventures in biotechnology, bioinformatics, or related fields, contributing to economic growth and societal well-being.

#### **Program Outcomes (POs):**

- *PO1: Complex Problem Solving:* Develop the ability to identify, analyze, and solve complex biological problems using advanced biotechnological and bioinformatics tools and techniques.
- **PO2:** Critical Thinking and Analytical Reasoning: Apply critical thinking and analytical reasoning to interpret experimental data, evaluate research outcomes, and make informed decisions in scientific research and practical applications.
- *PO3: Creativity and Innovation:* Foster creativity and innovation in designing experiments, developing new biotechnological processes, and creating novel bioinformatics algorithms and software solutions.
- **PO4:** Communication Skills: Enhance written and oral communication skills to effectively present research findings, collaborate with multidisciplinary teams, and engage with diverse audiences in both academic and professional settings.
- *PO5: Research-Related Skills:* Acquire and apply advanced research-related skills, including experimental design, data collection, statistical analysis, and bioinformatics modeling, to conduct high-quality research in biotechnology and bioinformatics.
- *PO6: Collaboration and Leadership Readiness:* Demonstrate the ability to coordinate and collaborate with others in multidisciplinary teams, while also developing leadership qualities to guide projects and initiatives in both academic and industry settings.
- *PO7: Digital and Technological Skills:* Gain proficiency in digital and technological skills, including the use of bioinformatics software, databases, and biotechnological instrumentation, to address contemporary challenges in the life sciences.

- *PO8: Lifelong Learning and Autonomy:* Cultivate learning-how-to-learn skills, fostering a mindset of lifelong learning and professional development, with an emphasis on autonomy and self-directed learning in rapidly evolving scientific fields.
- **PO9:** Multicultural Competence and Inclusive Spirit: Develop multicultural competence and an inclusive spirit by engaging with diverse perspectives and fostering an inclusive environment in research and professional practice.
- *PO10: Environmental Awareness and Community Engagement:* Promote environmental awareness and take action on sustainability issues, while actively participating in community engagement and service initiatives to address societal and environmental challenges with empathy and responsibility.

#### **Program Specific Outcomes (PSOs):**

- **PSO1:** Demonstrate a comprehensive understanding of the fundamental concepts, theories, and principles in biotechnology and bioinformatics, including molecular biology, genetics, biochemistry, and computational biology.
- **PSO2:** Acquire proficiency in laboratory techniques commonly used in biotechnology and bioinformatics, such as DNA manipulation, protein analysis, cell culture, sequencing, and bioinformatics tools and software.
- **PSO3:** Utilize advanced biotechnological and bioinformatics tools, techniques, and methodologies to address real-world problems and make meaningful contributions to scientific research, industry, healthcare, and other sectors.
- **PSO4:** Apply critical thinking and problem-solving skills to analyze biological data, design experiments, interpret results, and develop solutions to biotechnological and bioinformatics challenges.
- **PSO5:** Integrate knowledge from multiple disciplines, including biology, chemistry, mathematics, and computer science, to address complex issues in biotechnology and bioinformatics effectively.
- **PSO6:** Effectively communicate scientific concepts, research findings, and technical information to diverse audiences through written reports, oral presentations, and visual representations in biotechnology and bioinformatics.

#### **COURSE STRUCTURE FYUGP**

#### DIBRUGARH UNIVERSITY (SINGLE MAJOR)

| NAME OF THE PROGRAMME: B.Sc. in Biotechnology and Bioinformatics |           |               |         |        |       |       |               |           |                |        |
|------------------------------------------------------------------|-----------|---------------|---------|--------|-------|-------|---------------|-----------|----------------|--------|
| MAJOR: Biote                                                     | echnology | v and Bioinfo | rmatics |        |       |       |               |           |                |        |
| Yr                                                               | Sem       | Major         | Minor   | GEC    | AEC   | SEC   | Internship/   | VAC       | Research/      | Total  |
|                                                                  |           |               |         |        |       |       | Community     |           | Dissertation   | Credit |
|                                                                  |           |               |         |        |       |       | Engagement    |           |                |        |
| Individual C                                                     | Credit    | 4             | 4       | 3      | 4     | 3     | 4             | 2         | 4-8            |        |
| 1st                                                              | Ι         | BTNC01        | BTNM01  | BTGE-1 | AEC-1 | SEC-1 |               | VAC-01/02 |                | 20     |
| UG                                                               | II        | BTNC02        | BTNM02  | BTGE-2 | AEC-2 | SEC-2 |               | VAC-03/04 |                | 20     |
| Certificate                                                      |           |               |         |        |       |       |               |           |                |        |
| 2nd                                                              | III       | BTNC03        | BTNM03  | BTGE-3 |       | SEC-3 |               | VAC-05    |                | 20     |
| UG Diploma                                                       |           | BTNC04        |         |        |       |       |               |           |                |        |
|                                                                  | IV        | BTNC05        | BTNM04  |        |       |       |               |           |                | 20     |
|                                                                  |           | BTNC06        |         |        |       |       |               |           |                |        |
|                                                                  |           | BTNC07        |         |        |       |       |               |           |                |        |
|                                                                  |           | BTNC08        |         |        |       |       |               |           |                |        |
| 3rd                                                              | V         | BTNC09        | BTNM05  |        |       |       | 2+2 (I+CE)    |           |                | 20     |
| UG Degree                                                        |           | BTNC10        |         |        |       |       | OR            |           |                |        |
| _                                                                |           | BTNC11        |         |        |       |       | 4(I) / 4 (CE) |           |                |        |
|                                                                  | VI        | BTNC12        | BTNM06  |        |       |       |               |           |                | 20     |
|                                                                  |           | BTNC13        |         |        |       |       |               |           |                |        |
|                                                                  |           | BTNC14        |         |        |       |       |               |           |                |        |
|                                                                  |           | BTNC15        |         |        |       |       |               |           |                |        |
| 4th                                                              | VII       | BTNC16        | BTNM07  |        |       |       |               |           | 4 RM (Research | 20     |
| UG Honors                                                        |           | BTNC17        |         |        |       |       |               |           | Methodology)   |        |
| Degree                                                           |           | BTNC18        |         |        |       |       |               |           |                |        |
|                                                                  | VIII      | BTNC19        | BTNM08  |        |       |       |               |           | 8 BTNDS        | 20     |
|                                                                  |           | BTNC20        |         |        |       |       |               |           | (Dissertation) |        |

\*Details of each Course Codes are provided in the subsequent pages.

#### Name of the Programme: Four Years Under-Graduate Programme

Nature of Degree: Single Major

Name of the Programme: B.Sc. in Biotechnology and Bioinformatics

Major: Biotechnology and Bioinformatics

| Voar      | Somostor                 | Course          | Title of the Course: B.Sc. in Biotechnology and                 | Total       |
|-----------|--------------------------|-----------------|-----------------------------------------------------------------|-------------|
| i cai     | Semester                 | Course          | Bioinformatics                                                  | Credit      |
|           |                          | BTNC01          | Fundamentals of Biochemistry                                    | 4           |
|           |                          | BTNM01          | Biochemistry and Bio-instrumentation                            | 4           |
|           |                          | BTGE-1          | Biotechnological Innovation in Food                             | 3           |
|           | 1 <sup>st</sup> Competer |                 | Preservation Technology                                         |             |
|           | 1 Semester               | AEC-1           | Modern Indian Language                                          | 4           |
|           |                          | VAC-1           | Understanding India                                             | 2           |
|           |                          | VAC-2           | Health and Wellness                                             | 2           |
|           |                          | SEC-1           | As provided by the Institute/Dept/Centre                        | 3           |
| Voor 01   | Total Credits            |                 |                                                                 | 20          |
| rearui    |                          | BTNC02          | Molecular Basis of Cell Biology                                 | 4           |
|           |                          | BTNM02          | Cell Biology and Microbiology                                   | 4           |
|           | 2 <sup>nd</sup> Semester | BTGE-2          | Biotechnological Innovation in                                  | 3           |
|           |                          |                 | Horticulture                                                    |             |
|           |                          | AEC-2           | English Language and Communication Skills                       | 4           |
|           |                          | VAC-3           | Environmental Science                                           | 2           |
|           |                          | VAC-4           | Yoga Education                                                  | 2           |
|           |                          | SEC-2           | As provided by the Institute/Dept/Centre                        | 3           |
|           | Total Credits            |                 |                                                                 | 20          |
| The       | e students on ex         | kit shall be av | varded Undergraduate Certificate (in the Field of Biotechnology | and         |
|           | Bioinf                   | ormatics) aft   | er securing the requisite 40 Credits in Semester 1 and 2        |             |
|           |                          | BTNC03          | Fundamentals of Microbiology                                    | 4           |
|           |                          | BTNC04          | Molecular Biology                                               | 4           |
|           | 2rd Someotor             | BTNM03          | Genetics and Biostatistics                                      | 4           |
|           | 3.ª Semester             | BTGE-3          | Biotechnology in Human Welfare                                  | 3           |
|           |                          | VAC-5           | Digital and Technological Solutions / Digital Fluency           | 2           |
| Voor 02   |                          | SEC-3           | As provided by the Institute/Dept/Centre                        | 3           |
|           | Total Credits            |                 |                                                                 | 20          |
|           | 4th Semester             | BTNC05          | Genetics                                                        | 4           |
|           |                          | BTNC06          | Bioinstrumentation                                              | 4           |
|           |                          | BTNC07          | Biostatistics and Data Analysis                                 | 4           |
|           |                          | BTNC08          | Fundamental of Bioinformatics                                   | 4           |
|           |                          | BTNM04          | Molecular Biology                                               | 4           |
|           | Total Credits            |                 |                                                                 | 20          |
| The stude | nts on exit shall        | be awarded      | Undergraduate Diploma (in the Field of Biotechnology and Bioin  | nformatics) |
|           | afte                     | er securing th  | ne requisite 80 Credits on completion of Semester IV            | -           |

| Year       | Semester                 | Course         | Title of the Course: B.Sc. in Biotechnology and                    | Total      |
|------------|--------------------------|----------------|--------------------------------------------------------------------|------------|
| - i cui    | Beinester                | course         | Bioinformatics                                                     | Credit     |
|            |                          | BTNC09         | Immunology                                                         | 4          |
|            |                          | BTNC10         | Bioethics and Biosafety                                            | 4          |
|            |                          | BTNC11         | Molecular Evolution and Phylogeny                                  | 4          |
|            | 5 <sup>th</sup> Semester | BTNM05         | Fundamental of Bioinformatics                                      | 4          |
|            | o comotor                | CE             | Community Engagement                                               | 4          |
|            |                          | Ι              | Internship                                                         | 4          |
|            |                          | CE+I           | Community Engagement+ Internship                                   | 2+2        |
| Year 03    |                          | Any one        | As provided by the Institute/Dept/Centre                           |            |
|            | Total Credits            |                |                                                                    | 20         |
|            | 6 <sup>th</sup> Semester | BTNC12         | Human Diseases and Disorders                                       | 4          |
|            |                          | BTNC13         | Bio-Entrepreneurship and Commercialization                         | 4          |
| The studen |                          | BTNC14         | Genomics and Proteomics                                            | 4          |
|            |                          | BTNC15         | Fundamentals of Programming                                        | 4          |
|            |                          | BTNM06         | Bioinformatics Tools and Techniques                                | 4          |
|            | Total Credits            |                |                                                                    | 20         |
| The stude  | nts on exit shall        | be awarded     | Bachelor of Science (in the Field of Biotechnology and Bioinform   | natics) (3 |
|            | years) a                 | fter securing  | the requisite 120 Credits on completion of Semester 6              |            |
|            |                          | BTNC16         | Genetic Engineering                                                | 4          |
|            |                          | BTNC17         | Plant Biotechnology                                                | 4          |
|            | 7 <sup>th</sup> Semester | BTNC18         | Data Science                                                       | 4          |
|            |                          | BTNM07         | Human Diseases and Disorders                                       | 4          |
|            |                          | RM             | Research Methodology                                               | 4          |
|            | Total Credits            |                |                                                                    | 20         |
|            |                          | BTNC19         | Bioprocess Technology                                              | 4          |
|            | 8th Somostor             | BTNC20         | Structural Bioinformatics                                          | 4          |
|            | 0 Semester               | BTNM08         | Genetic Engineering                                                | 4          |
|            |                          | BTNDS          | Dissertation                                                       | 8          |
|            | Total Credits            |                |                                                                    | 20         |
|            | The stude                | nts on exit sl | nall be awarded Bachelor of Science(in the Field of Biotechnolog   | y and      |
|            | Bioinform                | atics) (Hono   | rs with Research) (4 years) after securing the requisite 160 Credi | ts on      |
|            |                          |                | completion of Semester 8                                           |            |

| : | FUNDAMENTALS OF BIOCHEMISTRY |
|---|------------------------------|
| : | MAJOR                        |
| : | 4                            |
| : | 60 (End Sem) + 40 (In Sem)   |
|   | :<br>:<br>:                  |

**Course Description:** This course delves into the structure and function of biological macromolecules, such as proteins, nucleic acids, lipids, and carbohydrates, and explores their roles in metabolic pathways, gene expression, and signal transduction. Students will thoroughly understand enzymatic catalysis, bioenergetics, and the regulation of biochemical reactions. The course includes both theoretical lectures and practical laboratory sessions, covering techniques like estimation of biomolecules, enzyme assays, chromatography, electrophoresis, and PCR. With a strong foundation in chemistry and biology recommended, this course prepares students for advanced studies and careers in biochemistry, molecular biology, medicine, and biotechnology.

#### Prerequisites

- Chemical bonding, thermodynamics, kinetics, and equilibrium.
- Introductory courses in biology
- Introductory courses in Animal and plant physiology

COURSE OBJECTIVES: The objectives of this Course are to -

- Identify the basic structure and function of biomolecules, their chemical and physical properties and catalysis.
- Explain the biological catalysts, their mechanisms of action, and kinetics and provide an overview of the major metabolic pathways.
- Analyze the role of enzymes in the various metabolisms in vivo.
- Understand and explain the insight into bodily processes that occur in living organisms through the metabolism of biomolecules

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Understand the fundamentals of biochemistry and gain knowledge on the application of different physical laws in biochemistry

- LO 1.1: Describe how physical laws, such as thermodynamics, kinetics, and equilibrium mechanics, apply to biochemical processes.
- LO 1.2: Discuss how 1<sup>st</sup> and 2<sup>nd</sup> laws of thermodynamics apply in living organisms
- LO 1.2: Demonstrate physical principles to experimental techniques in biochemistry, such as spectroscopy, chromatography, and electrophoresis.

CO2: Understand the role of water in different bodily processes in living organisms

- LO 2.1: Describe the unique chemical and physical properties of water, such as its polarity, hydrogen bonding, and solvent capabilities.
- LO 2.2: Discuss why water is essential for life, highlighting its role as a universal solvent.
- LO 2.3: Describe how water is vital for cellular processes, including cell structure maintenance, transport of nutrients and waste, and biochemical reactions.

CO3: Understand the chemical properties and reactivity of biomolecules, including the types of chemical bonds they form, their interactions with other molecules, and how they participate in biochemical reactions.

- LO 3.1: Define biomolecules and describe their occurrence in living organisms.
- LO 3.2: Classify biomolecules based on their chemical and physical properties.
- LO 3.3: Describe the functions of biomolecules in living organisms

CO4: Describe the structure, mechanism and functions of enzymes and associated molecules that can affect the efficiency of enzyme action.

- LO 4.1: Define enzyme and classify based on reactions it catalyse
- LO 4.2: Describe how enzyme provides a unique microenvironment that is conducive to the reaction.
- LO 4.3: Discuss the role of vitamins and other associated molecules that involved in enzyme catalysed reaction

CO5: Classify the roles of enzymes in various biological processes, including metabolism, signal transduction, DNA replication, protein synthesis and other bodily processes in living organisms.

- LO 5.1: Explain the functions of enzymes in various bodily process
- LO 5.2: Comprehend the roles of enzymes in various catabolic and anabolic pathways, including energy production and biosynthesis.
- LO 5.3: Analyze how enzymes regulate metabolic processes and maintain cellular homeostasis.

C06: Apply their knowledge of enzymology to analyse and solve problems in biochemistry, molecular biology, and related fields, including the design of experiments and the interpretation of experimental data.

- LO 5.1: Develop experimental data involving enzyme activity assays, enzyme kinetics and inhibition.
- LO 5.2: Examine the effect of temperature, pH and substrate concentration on enzyme activity
- LO 5.3: Compare the enzyme involved in central metabolic pathways in different living organism

CO7: Compare how cells and organisms adapt their metabolism in response to environmental changes, such as fasting, exercise, and exposure to toxins.

- LO 7.1: Identify key metabolic pathways involved in fasting, exercise, and detoxification.
- LO 7.2: Explain the biochemical processes underlying metabolic changes during fasting, LO LO 7.3: exercise, and toxin exposure.
- LO 7.4: Compare and contrast the metabolic responses of cells and organisms to the same environmental stressors.
- LO 7.5: Examine the role of specific genes and proteins in mediating these responses.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          | CO1, CO2   |       |         |          | CO5    |
| Conceptual Knowledge    |          | CO7        |       | CO3     | CO4      |        |
| Procedural Knowledge    |          |            | CO6   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1        | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1    | 1.3     |
| CO2        | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.1     |
| CO3        | 2   | 2   | 1   | 1   | 1   | 1   | 2   | 2   | 1   | 1    | 1.4     |
| <b>CO4</b> | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO5        | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO6        | 3   | 3   | 2   | 1   | 3   | 2   | 2   | 2   | 1   | 1    | 2.0     |
| <b>CO7</b> | 2   | 3   | 1   | 1   | 2   | 1   | 1   | 2   | 1   | 3    | 1.7     |
| Average    | 2.0 | 2.3 | 1.1 | 1.0 | 1.7 | 1.1 | 1.6 | 1.9 | 1.0 | 1.3  |         |

| Biotechnology                                                                                                                                                                                                                     | and Bioinfor                                                                                                                                                                                                                   | matics                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                              | Dibrugar                                                                                                                      | h Universitv                                          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Title of the cou                                                                                                                                                                                                                  | irse                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                |                                                                              | B                                                                                                                             | iochemistry                                           |  |  |  |  |
| Category                                                                                                                                                                                                                          | Major                                                                                                                                                                                                                          | Year<br>Semester                                                                                                                                                                                        | 1<br>I                                                                                                                                           | Credits                                                                                                                                        | 4                                                                            | Course code                                                                                                                   | BTNC01                                                |  |  |  |  |
| T / / 11                                                                                                                                                                                                                          |                                                                                                                                                                                                                                | Lect                                                                                                                                                                                                    | ure                                                                                                                                              | Tutoria                                                                                                                                        | al                                                                           | Lab Practical                                                                                                                 | Total                                                 |  |  |  |  |
| Instructional h                                                                                                                                                                                                                   | ours                                                                                                                                                                                                                           | 37                                                                                                                                                                                                      | 7                                                                                                                                                | 08                                                                                                                                             |                                                                              | 30                                                                                                                            | 75                                                    |  |  |  |  |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                | ·                                                                                                                                                                                                       | Course (                                                                                                                                         | Dutline                                                                                                                                        |                                                                              |                                                                                                                               |                                                       |  |  |  |  |
| Unit 1: Found                                                                                                                                                                                                                     | Unit 1: Foundation of BiochemistryMarks: 12, L: 6, T: 2, P: 6                                                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                |                                                                              |                                                                                                                               |                                                       |  |  |  |  |
| <ul> <li>1.1 Physical, c.</li> <li>1.2 Significance</li> <li>1.3 Chemical i</li> <li>Practical: <ul> <li>a) Numerical</li> <li>and perical</li> </ul> </li> </ul>                                                                 | hemical, and<br>ee of water in<br>nteractions, H<br>ical problems                                                                                                                                                              | molecular four<br>biochemistry;<br>Energy-rich con<br>based on the pre                                                                                                                                  | ndation of bi<br>acid-base co<br>mpounds, so<br>paration of sta                                                                                  | ochemistry.<br>oncept, buffers<br>urces and utili<br>andard solution                                                                           | , pH an<br>zation,<br>s of diffe                                             | d pK.<br>Laws of thermodyr<br>erent molarity, norma                                                                           | namics<br>ality, strength                             |  |  |  |  |
| II                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                |                                                                              | Maadaa 14                                                                                                                     | ( I . O T. )                                          |  |  |  |  |
| Unit 2: Introd<br>P· 12                                                                                                                                                                                                           | uction to Bio                                                                                                                                                                                                                  | molecules                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                |                                                                              | Marks: 10                                                                                                                     | ), L: 9, I: 2,                                        |  |  |  |  |
| sugars, proteogly<br>2.3 Proteins: Cl<br>2.4 Nucleic acid<br>Hershey-Chase (<br>2.5 Lipids: Ch<br>cerebrosides, ste<br>Practical:<br>a) Estima<br>b) Estima<br>c) Quanti<br>d) Estima<br>e) Quanti                                | ycans and glychemistry of am<br>hemistry of am<br><b>Is:</b> Nucleic ac<br>experiment. Classifier<br>emistry and<br>roids, bile aci-<br>ation of prote-<br>tion of total of<br>fication of re-<br>tion of DNA<br>fication of R | coproteins<br>nino acids and pr<br>ids as genetic in<br>hemistry, structu<br>functions of fa<br>ds, prostaglandin<br>ins by Lowry a<br>carbohydrates<br>ducing sugars<br>by diphenylar<br>NA by orcinol | roteins. Hierar<br>formation car<br>are and function<br>atty acids, est<br>and Bradford<br>by Anthrone<br>by Dinitrosa<br>nine method<br>method. | cchy of protein s<br>riers, experiment<br>on of nucleoside<br>ssential fatty a<br>s, proteolipids,<br>assays.<br>method.<br>licylic acid mo    | structure<br>ntal evid<br>es and nu<br>cids, fa<br>phospha<br>ethod.         | . Ramachandran Plot<br>lence e.g., genetic tra<br>icleotides.<br>ts, phospholipids, s<br>itidopeptides, lipopol               | t<br>ansformation,<br>sphingolipids,<br>lysaccharides |  |  |  |  |
| Unit 3: Enzyı                                                                                                                                                                                                                     | nes and Enz                                                                                                                                                                                                                    | ymology                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                |                                                                              | Marks: 16,                                                                                                                    | L: 11, P: 12                                          |  |  |  |  |
| <ul> <li>3.1 Introduction</li> <li>Definitions of Ribozymes, Ref</li> <li>3.2 Cofactors at 3.3 Vitamins: constraints of 3.4 Mechanism site groups. Meg</li> <li>3.5 Multienzyme complex (pyru)</li> <li>3.6 Enzyme Ref</li> </ul> | on to enzyr<br>IU, Katal,<br>estriction enz<br>and coenzyme<br>classification,<br>of Enzyme<br>echanism of a<br>ne system: S<br>vate dehydro<br>egulation: G                                                                   | nes: General<br>enzyme turn<br>ymes.<br>es: Nomenclatu<br>, their coenzym<br>Action: Acid-b<br>action of enzym<br>ignificance &<br>genase/ fatty a<br>ceneral mechan                                    | characteristi<br>over and s<br>ure and class<br>ne forms and<br>ase catalysis<br>nes - chymot<br>properties: N<br>cid synthase<br>nisms of enz   | ics, IUB enzy<br>pecific activit<br>ification, role<br>functions<br>, covalent cata<br>crypsin or lyso<br>Mechanism of<br>).<br>zyme regulatio | yme cl<br>ty. Allo<br>in enzy:<br>alysis. C<br>zyme.<br>action a<br>on, proc | assification, biolo<br>osteric enzymes,<br>me catalysis.<br>Themical modificat<br>and regulation of r<br>duct inhibition, rev | ion of active<br>nultienzyme<br>versible and          |  |  |  |  |

irreversible modifications of enzymes, feedback inhibition, and feed-forward stimulation. 3.7 Enzyme Inhibition: Reversible and irreversible inhibition. Competitive, non-competitive, uncompetitive, linear-mixed type inhibitions. Suicide inhibitor.

#### Practical:

- a) Isolation and purification of enzyme from microbial/ plant/ animal source
- b) Assay of enzyme activity: Time dependence of enzyme catalysed reaction.
- c) Effect of pH and temperature and substrate concentration on the rate of enzymatic reaction.
- d) Inhibition of enzyme activity and Determination of Ki.

#### Unit 4: Metabolism of Biomolecules

4.1 General concept of metabolism, Types of metabolism

4.2 Carbohydrates: Glycolysis- pathway, regulation & energetic, feeder pathway of glycolysis, citric acid cycle- reactions and regulation, pentose phosphate pathway and its significance, gluconeogenesis, glycogenesis and glycogenolysis, Cori cycle, Hormonal regulation of carbohydrate metabolism.

4.3 Amino Acids: General reactions of amino acid metabolism – transamination, decarboxylation, oxidative & non-oxidative deamination of amino acids. Urea cycle and its regulation.

4.4 Lipids: Biosynthesis of fatty acids and lipids, Hydrolysis of tri-acylglycerols,  $\alpha$ -,  $\beta$ -,  $\omega$ - oxidation of fatty acids.

4.5 Nucleotides: Metabolism of purines and pyrimidines- reactions and regulation

| Where             | L: Lectures                                           | T: Tutorials | P: Practical         |
|-------------------|-------------------------------------------------------|--------------|----------------------|
| Modes<br>1.       | of In-Semester Assessment:<br>One sessional test -    |              | 40 Marks<br>10 Marks |
| 2.                | Any one of the following activities list              | ed below -   | 10 Marks             |
|                   | a) Assignment                                         |              |                      |
|                   | b) Group discussion                                   |              |                      |
|                   | c) Seminar/Presentation                               |              |                      |
|                   | d) Multiple Choice Questions                          |              |                      |
| 3.                | Practical In semester Examination                     |              | 20 Marks             |
| Attainı<br>•<br>• | ment Strategies<br>Feedback for each LO<br>Activities |              |                      |
|                   |                                                       |              |                      |

# SUGGESTED READINGS: 1. Nelson, D.L., Cox, M.M. (2021) Lehninger Principles of Biochemistry, 8<sup>th</sup> Edition, WH Freeman and Company, New York, USA.

- Jeremy Berg; Gregory Gatto Jr.; Justin Hines; John L. Tymoczko; Lubert Stryer, Tenth Edition, 2023, W.H Freeman and Co.
- 3. Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists.
- 4. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons
- 5. Victor W. Rodwell, David Bender, Kathleen M. Botham, Peter J. Kennelly, P. Anthony Weil (2018). Harper's Illustrated Biochemistry, 31<sup>st</sup> Edition, McGraw Hill / Medical
- 6. Salisbury, F.B. and Ross, C.W. (1991) Plant Physiology, Wadsworth Publishing Co. Ltd.

| NAME OF THE COURSE | : | <b>BIOCHEMISTRY AND BIOINSTRUMENTATION</b> |
|--------------------|---|--------------------------------------------|
| COURSE TYPE        | : | MINOR COURSE                               |
| TOTAL CREDIT       | : | 4                                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)                 |

**Course Description:** The Biochemistry and Bioinstrumentation course integrates the study of the chemical processes in living organisms with the practical application of instruments used in biological and medical research. Students will explore the structure and function of macromolecules, enzyme kinetics, metabolic pathways, and the molecular basis of gene expression and cell signaling, alongside learning to operate and interpret data from key bioanalytical instruments such as spectroscopes, microscopes, chromatographs, and electrophoresis equipment. Through a combination of theoretical learning and hands-on laboratory experience, the course aims to equip students with a comprehensive understanding of biochemical processes and the technical proficiency to utilize advanced bioinstrumentation techniques in research and diagnostics.

#### Prerequisites

- Chemical bonding, thermodynamics, kinetics, and equilibrium.
- Introductory courses in biology
- Introductory courses in Animal and plant physiology
- Knowledge of chemical principles and reactions.
- General Physical principles of optics, electromagnetism, and mechanics.

COURSE OBJECTIVES: The objectives of this Course are to -

- Understand Macromolecular Structure and Function:
- Explain how macromolecules contribute to the structural and functional integrity of cells.
- Analyze enzyme kinetics and understand the mechanisms of enzyme action and regulation.
- Explore Metabolic Pathways and understand the bioenergetics and thermodynamics of metabolic processes.
- Understand the principles and applications of various bioanalytical instruments, including spectroscopy, microscopy, chromatography, and electrophoresis.
- Apply biochemical and bioinstrumentation knowledge in practical laboratory experiments.
- Promote Ethical and Safe Laboratory Practices

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Understand the fundamentals of biochemistry and gain knowledge on the application of different physical laws in biochemistry

- LO 1.1: Describe how physical laws, such as thermodynamics, kinetics, and equilibrium mechanics, apply to biochemical processes.
- LO 1.2: Discuss how 1<sup>st</sup> and 2<sup>nd</sup> laws of thermodynamics apply in living organisms
- LO 1.2: Demonstrate physical principles to experimental techniques in biochemistry, such as spectroscopy, chromatography, and electrophoresis.

CO2: Understand the chemical properties and reactivity of biomolecules, including the types of chemical bonds they form, their interactions with other molecules, and how they participate in biochemical reactions.

- LO 2.1: Define biomolecules and describe their occurrence in living organisms.
- LO 2.2: Classify biomolecules based on their chemical and physical properties.
- LO 2.3: Describe the functions of biomolecules in living organisms

CO3: Describe the structure, mechanism and functions of enzymes and associated molecules that can affect the efficiency of enzyme action.

• LO 3.1: Define enzyme and classify based on reactions it catalyse

- LO 3.2: Describe how enzyme provides a unique microenvironment that is conducive to the reaction.
- LO 3.3: Discuss the role of vitamins and other associated molecules that involved in enzyme catalysed reaction

CO4: Acquire in-depth knowledge of the theory, instrumentation, and applications of various microscopy and spectrophotometry techniques.

- LO 4.1: Classify microscopic and spectrophotometric techniques according to their working principle.
- LO 4.2: Identify the key components and instrumentation required for each type of microscopy and spectroscopy
- LO 4.3: Explain the applications, strengths and limitations of each microscopic and spectrophotometric technique used in biological research.

CO5: Compare working principles and application of different chromatographic techniques

- LO 5.1: Explain how each chromatographic technique separates mixtures based on different principles
- LO 5.2: Use knowledge of chromatographic principles to choose appropriate techniques for specific separation tasks.
- LO 5.3: Compare the advantages and limitations of different chromatographic techniques in terms of resolution, sensitivity, and suitability for various applications

CO6: Compare working principles and application of different centrifugation techniques

- LO 6.1: Explain the working principles of each centrifugation technique, including how particles are separated based on size, shape, and density.
- LO 6.2: Demonstrate the use of different centrifugation techniques in laboratory settings to separate and purify biological samples.
- LO 6.3: Compare and contrast the advantages and limitations of different centrifugation techniques in terms of resolution, speed, scalability, and sample compatibility.
- LO 6.4: Analyze experimental data from centrifugation experiments to interpret separation efficiency and identify factors influencing experimental outcomes.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension  | Remember | Understand | Apply | Analyse | Evaluate | Create |
|----------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge    |          | CO1, CO2   |       |         |          | CO5    |
| Conceptual Knowledge |          | CO7        |       | CO3     | CO4      |        |
| Procedural Knowledge |          |            | CO6   |         |          |        |
| Metacognitive        |          |            |       |         |          |        |
| Knowledge            |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1    | 1.3     |
| CO2     | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.1     |
| CO3     | 2   | 2   | 1   | 1   | 1   | 1   | 2   | 2   | 1   | 1    | 1.4     |
| CO4     | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO5     | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO6     | 3   | 3   | 2   | 1   | 3   | 2   | 2   | 2   | 1   | 1    | 2.0     |
| CO7     | 2   | 3   | 1   | 1   | 2   | 1   | 1   | 2   | 1   | 3    | 1.7     |
| Average | 2.0 | 2.3 | 1.1 | 1.0 | 1.7 | 1.1 | 1.6 | 1.9 | 1.0 | 1.3  |         |

| Centre for Biotechnology and Bioinformatics Dibrugarh University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                               |                                                                                    |                                             |                                                        | rh University                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|------------------------------|
| Title of the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | urse                                                                                                                                                                                                                                                                                         | BIOCHEMISTRY AND BIOINSTRUMENTAT                                                        |                                                                               |                                                                                    |                                             |                                                        |                              |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minor                                                                                                                                                                                                                                                                                        | Year<br>Semester                                                                        | 1<br>I                                                                        | Credits                                                                            | 4                                           | Course code                                            | BTNM01                       |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | Lect                                                                                    | ture                                                                          | Tutoria                                                                            | al                                          | Lab Practical                                          | Total                        |
| Instructional h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ours                                                                                                                                                                                                                                                                                         | 4                                                                                       | 0                                                                             | 05                                                                                 |                                             | 30                                                     | 75                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                         | Course                                                                        | Dutline                                                                            |                                             |                                                        |                              |
| Course Outline         Unit 1: Foundation of Biochemistry       Marks: 16, L: 6, T: 1, P: 10         1.1 Stablizing interactions (Van der Waals, electrostatic, hydrogen bonding, hydrophobic interaction, etc.).       1.2 Fundamentals of thermodynamic principles applicable to biological processes.         1.3 Significance of water in biochemistry; acid-base concept, buffers, pH and pK.       1.7 Energy rich compounds- sources and utilization         1.8 Structure of atoms, molecules and chemical bonds.       1.2 Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins) and their metabolism         Practical:       a) Numerical problems based on the preparation of standard solutions of different molarity, normality, strength and percentage         b) Estimation of proteins by Lowry and Bradford assays.       c) Estimation of total carbohydrates by Anthrone method.         d) Estimation of DNA by diphenylamine method       d) Estimation of DNA by diphenylamine method |                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                               |                                                                                    |                                             |                                                        |                              |
| e) Quantification of RNA by orcinol method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                               |                                                                                    |                                             |                                                        |                              |
| <ul> <li>2.1 Introduction</li> <li>Definitions of Ribozymes, R</li> <li>2.2 Cofactors</li> <li>2.3 Vitamins:</li> <li>2.4 Mechanism</li> <li>Practical</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fon to enzyn<br>f IU, Katal,<br>estriction enzy<br>and coenzyme<br>classification,<br>n of Enzyme                                                                                                                                                                                            | nes: General<br>enzyme turr<br>ymes.<br>es: Nomenclat<br>their coenzyn<br>Action, Enzyn | characterist<br>nover and s<br>ure and class<br>ne forms and<br>ne Regulation | ics, IUB enz<br>pecific activi<br>sification, role<br>l functions<br>n, Enzyme Inh | yme cla<br>ty. Allo<br>in enzyr<br>iibition | assification, biol<br>steric enzymes,<br>ne catalysis. | ogical roles;<br>Isoenzymes, |
| a) Assay<br>b) Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of enzyme ac<br>of pH and ter                                                                                                                                                                                                                                                                | tivity: Time d<br>nperature and                                                         | ependence o<br>substrate co                                                   | f enzyme cata ncentration on                                                       | lysed rea                                   | action.<br>of enzymatic rea                            | ction.                       |
| Unit 3: Bioph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ysical Metho                                                                                                                                                                                                                                                                                 | d                                                                                       |                                                                               |                                                                                    |                                             | Marks: 12, L                                           | .: 7, T: 2 P: 0              |
| 3.1 Spectrosco<br>Mass Spectror<br>3.2 Microscop<br>Electron Micro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>3.1 Spectroscopy: Theory, instrumentation &amp; applications of- UV-VIS spectrophotometry, IR spectroscopy, Mass Spectrometry and NMR.</li> <li>3.2 Microscopic techniques: Principle, working and applications. Light, electron and Confocal Microscopy, Electron 2010.</li> </ul> |                                                                                         |                                                                               |                                                                                    |                                             |                                                        |                              |
| Unit 4: Separ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ration technic                                                                                                                                                                                                                                                                               | lue                                                                                     |                                                                               |                                                                                    |                                             | Marks: 16, L:                                          | 11, T: 2 P: 10               |
| <ul> <li>4.1 Chromatography: Principle, types and applications of different chromatographic methods. Partition and Adsorption chromatography, Ion-exchange chromatography, Size exclusion and affinity chromatography.</li> <li>4.2 Basic principles of centrifugal force; RCF and RPM; Types of Centrifugation; applications of different centrifuges</li> <li>4.2: Theory, instrumentation and applications. Native PAGE, SDS PAGE, Agarose gel electrophoresis. Centrifugation: Working principle, types and applications</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                               |                                                                                    |                                             |                                                        |                              |
| Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                               |                                                                                    |                                             |                                                        |                              |

a) Hands-on training on setting up and running gel electrophoresis experiments (e.g., native PAGE, SDS-PAGE, agarose gel electrophoresis).

b) Demonstration of centrifugation protocols for isolating cellular components and biomolecules from biological samples.

| Where  | L: Lectures                           | T: Tutorials  | P: Practical |
|--------|---------------------------------------|---------------|--------------|
|        |                                       |               |              |
| Modes  | of In-Semester Assessment:            |               | 40 Marks     |
| 1.     | One sessional test -                  |               | 10 Marks     |
| 2.     | Any one of the following activities l | isted below - | 10 Marks     |
|        | a) Assignment                         |               |              |
|        | b) Group discussion                   |               |              |
|        | c) Seminar/Presentation               |               |              |
|        | d) Multiple Choice Questions          |               |              |
| 3.     | Practical In semester Examination     |               | 20 Marks     |
| Attain | ment Strategies                       |               |              |
| •      | Feedback for each LO                  |               |              |
|        | Activition                            |               |              |

• Activities

#### **SUGGESTED READINGS:**

- 1. Nelson, D.L., Cox, M.M. (2021) Lehninger Principles of Biochemistry, 8<sup>th</sup> Edition, WH Freeman and Company, New York, USA.
- 2. Jeremy Berg; Gregory Gatto Jr.; Justin Hines; John L. Tymoczko; Lubert Stryer, Tenth Edition, 2023, W.H Freeman and Co.
- 3. Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists.
- 4. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons
- 5. Victor W. Rodwell, David Bender, Kathleen M. Botham, Peter J. Kennelly, P. Anthony Weil (2018). Harper's Illustrated Biochemistry, 31<sup>st</sup> Edition, McGraw Hill / Medical
- 6. Salisbury, F.B. and Ross, C.W. (1991) Plant Physiology, Wadsworth Publishing Co. Ltd.
- 7. Principles of Instrumental Analysis" by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 8. Biological Safety: Principles and Practices" by Diane O. Fleming, Debra L. Hunt
- 9. Basic Laboratory Methods for Biotechnology" by Lisa A. Seidman, Cynthia J. Moore
- 10. Analytical Chemistry: A Practical Approach" by Bryan M. Ham, Aihui MaHam
- 11. Calibration and Validation of Analytical Methods: A Sampling of Current Approaches" by Mark Stauffer
- 12. Maintenance and Troubleshooting of Laboratory Instruments" by Prakash Singh Bisen, Anjana Sharma
- 13. Good Laboratory Practice: Nonclinical Laboratory Studies Concise Reference" by M. S. Traul
- 14. Chemical Laboratory Safety and Security: A Guide to Developing Standard Operating Procedures" by National Research Council
- 15. Fundamentals of Light Microscopy and Electronic Imaging" by Douglas B. Murphy and Michael W. Davidson

# NAME OF THE COURSE: BIOTECHNOLOGICAL INNOVATION IN FOOD PRESERVATION<br/>TECHNOLOGYCOURSE TYPE: GENERIC ELECTIVESTOTAL CREDIT: 3TOTAL MARKS: 60 (End Sem) + 40 (In Sem)

**Course Description:** This course explores the applications of biotechnological innovations in food preservation, focusing on techniques to extend shelf life, improve safety, and enhance nutritional quality. Students will examine the principles and methods of food preservation, including fermentation, biopreservation, and genetic modification, and analyze their impact on food quality and sustainability.

#### Prerequisites

- Foundation in Biology and Chemistry
- Proficiency in basic laboratory techniques, such as pipetting, measuring, and following experimental protocols

Course Objectives: The objectives of this Course are to -

- Understand the principles and mechanisms of traditional and biotechnological methods of food preservation.
- Explore the applications of biotechnological innovations such as fermentation, probiotics, and genetic modification in food preservation.
- Evaluate the impact of biotechnological food preservation techniques on food safety, quality, and sustainability.
- Develop critical thinking skills to assess the ethical, social, and environmental implications of biotechnological innovations in food preservation.
- •

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO1:** Understand the principles of food preservation

- LO 1.1: Explain the differences between traditional and biotechnological methods of food preservation.
- LO 1.2: Identify factors influencing food spoilage and shelf life.
- LO 1.3: Analyze regulatory frameworks governing food preservation techniques.

**CO2:** Apply fermentation in food preservation.

- LO 2.1: Explain the fundamentals of fermentation, including microbial metabolism, substrate utilization, and product formation.
- LO 2.2: Demonstrate practical skills in fermentation techniques, such as inoculum preparation, fermentation monitoring, and product analysis.
- LO 2.3: Analyze the role of fermentation in food preservation, comparing the sensory, nutritional, and health benefits of fermented products to non-fermented counterparts, and evaluating their suitability for commercialization and consumer acceptance.

**CO3**: Apply Biopreservation Techniques

- LO 3.1: Describe the principles of biopreservation, to control spoilage and pathogenic microorganisms in food.
- LO 3.2: Demonstrate practical skills in biopreservation methods, showing competence in selecting and applying appropriate biopreservation strategies to different food matrices.
- LO 3.3: Evaluate the effectiveness of biopreservation techniques in extending the shelf life and ensuring the safety of perishable foods.

CO4: Apply genetic modification in food preservation

- LO 4.1: Explain the techniques of genetic engineering used in food preservation, illustrating how genetic modification can enhance traits such as pest resistance, shelf-life extension, and nutrient content in food crops.
- LO 4.2: Analyze case studies of genetically modified organisms (GMOs) in food preservation, evaluating their impact on food safety, environmental sustainability, and socioeconomic factors, and discussing the controversies and ethical considerations surrounding their use.
- LO 4.3: Assess the regulatory landscape and public perceptions of GMOs in food, understanding the role of government agencies, scientific institutions, and consumer advocacy groups in shaping policies and public discourse on genetically modified foods.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse  | Evaluate | Create |
|-------------------------|----------|------------|-------|----------|----------|--------|
| Factual Knowledge       |          |            |       |          |          |        |
| Conceptual Knowledge    |          | CO1        |       |          |          |        |
| Procedural Knowledge    |          |            | CO2   | CO3, CO4 |          |        |
| Metacognitive Knowledge |          |            |       |          |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |         |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
|         |     |     |     |     |     |     |     |     |     |      | Average |
| CO1     | 2   | 3   | 2   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.7     |
| CO2     | 3   | 2   | 2   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.7     |
| CO3     | 3   | 2   | 2   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.7     |
| CO4     | 3   | 2   | 3   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.8     |
| Average | 2.8 | 2.3 | 2.3 | 1.0 | 3.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0  |         |

3 for highest correlation, 2 for medium correlation and 1 for lowest correlation

| Biotechnology and Bioinformatics Dibrugarh University                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                    |                                                    |                                      |                                                            |                                    |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------------|------------------------------------|--|--|
| Title of the co                                                                                                | urse                                                                                                                                                                                                                                                                                                                           | Biotechnological Innovation in Food Preservation Tec            |                                                    |                                                    |                                      |                                                            |                                    |  |  |
| Category                                                                                                       | GE                                                                                                                                                                                                                                                                                                                             | Year<br>Semester                                                | 1<br>I                                             | Credits                                            | 3                                    | Course code                                                | BTGE-1                             |  |  |
| Treatment and 1                                                                                                |                                                                                                                                                                                                                                                                                                                                | Lec                                                             | ture                                               | Tutori                                             | Tutorial                             |                                                            | Total                              |  |  |
| Instructional h                                                                                                | ours                                                                                                                                                                                                                                                                                                                           | 2                                                               | 5                                                  | 05                                                 |                                      | 30                                                         | 60                                 |  |  |
| Course Outline         Unit 1: Introduction to Food Preservation       Marks: 12. L: 5. T: 1. P: 6             |                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                    |                                                    |                                      |                                                            |                                    |  |  |
| 1.1 Overview<br>1.2 Principles<br>1.3 Regulatory                                                               | <ul> <li>1.1 Overview of food preservation methods: traditional vs. biotechnological approaches</li> <li>1.2 Principles of food spoilage and factors influencing shelf life</li> <li>1.3 Regulatory frameworks and safety considerations in food preservation</li> </ul>                                                       |                                                                 |                                                    |                                                    |                                      |                                                            |                                    |  |  |
| Practical<br>a) Isolate<br>b) Isolate<br>c) Stain<br>lactop                                                    | <ul> <li>Practical <ul> <li>a) Isolate microbes from preserved or fermented food</li> <li>b) Isolate microbes from spoiled food</li> <li>c) Stain microbes isolated from different foods (simple and gram staining in bacteria and yeast/lactophenol cotton blue staining in filamentous fungi or mold)</li> </ul> </li> </ul> |                                                                 |                                                    |                                                    |                                      |                                                            |                                    |  |  |
| Unit 2: Ferm                                                                                                   | entation in F                                                                                                                                                                                                                                                                                                                  | ood Preserva                                                    | ition                                              |                                                    |                                      | Marks: 12, L:                                              | 5, T: 1, P: 6                      |  |  |
| <ul><li>2.1 Fundamen</li><li>2.2 Application</li><li>2.3 Fermentation</li></ul>                                | tals of fermen<br>ns of fermenta<br>on techniques                                                                                                                                                                                                                                                                              | tation: microb<br>ation in food p<br>and microbia               | bial metaboli<br>preservation:<br>al cultures us   | sm and produc<br>yogurt, cheese<br>ed in food ferr | et format<br>e, sauerk<br>mentatio   | ion<br>raut, and kimchi<br>n                               |                                    |  |  |
| a) Condu<br>in pH<br>b) Comp<br>Unit 3: Biopu                                                                  | (Methyl Red<br>(Methyl Red<br>are the nutrition<br>reservation To                                                                                                                                                                                                                                                              | tion experime<br>Test) and gas<br>onal content o<br>echniques   | nt using a sin<br>production (†<br>f fermented     | nple substrate<br>using Durham<br>(curd) vs. non-  | e (e.g. sug<br>'s tube).<br>-ferment | gar) and monitor the d products (pane <b>Marks: 12, L:</b> | ne changes<br>er)<br>5, T: 1, P: 8 |  |  |
| <ul><li>3.1 Principles</li><li>3.2 Biopreserv</li><li>3.3 Applicatio</li></ul>                                 | of biopreserva<br>vation methods<br>n of biopreser                                                                                                                                                                                                                                                                             | ation: inhibitions: inhibitions: bacteriocing<br>vation in mea  | on of spoilag<br>s, lactic acid<br>t, fish, dairy, | e and pathoger<br>bacteria, and p<br>and bakery pr | nic micro<br>protective<br>coducts   | oorganisms<br>e cultures                                   |                                    |  |  |
| Practical<br>a) Condu<br>that in                                                                               | ict a shelf-life<br>fluence its spo                                                                                                                                                                                                                                                                                            | study on a foc                                                  | od product, m                                      | nonitoring its q                                   | uality ov                            | ver time and identif                                       | fying factors                      |  |  |
| b) Design<br>spoila                                                                                            | n an experime<br>ge microorgar                                                                                                                                                                                                                                                                                                 | nisms in a peri                                                 | e the effective<br>ishable food                    | product.                                           | opreserv                             | ation technique in                                         | controlling                        |  |  |
| Unit 4: Gene                                                                                                   | tic Modificat                                                                                                                                                                                                                                                                                                                  | ion in Food P                                                   | reservation                                        |                                                    |                                      | Marks: 12, L: 5                                            | 5, T: 1, P: 10                     |  |  |
| <ul><li>4.1 Genetic en<br/>editing</li><li>4.2 Case studie<br/>extension, and</li><li>4.3 Regulatory</li></ul> | gineering tecl<br>es of genetica<br>nutrient enha<br>v issues and pu                                                                                                                                                                                                                                                           | nniques for for<br>lly modified o<br>ncement<br>ublic perceptio | od preservati<br>organisms (G<br>ons of GMOs       | on: transgenic<br>MOs) in food<br>s in food        | e crops, F<br>preserva               | RNA interference,<br>ation: pest resistance                | and genome<br>ce, shelf-life       |  |  |
| Practicala)Compmicrolb)Quantspectrol                                                                           | arison of she<br>bial growth ar<br>itative analysophotometry.                                                                                                                                                                                                                                                                  | If-life between<br>ad enzyme act<br>sis of nutrie               | n GM and n<br>ivity.<br>nts (e.g., b               | on-GM fruits<br>eta-carotene)                      | . Analys<br>in GM                    | is of spoilage fac                                         | tors such as<br>crops using        |  |  |

#### **Unit 5: Novel Approaches in Food Preservation**

#### Marks: 12, L: 5, T: 1, P: 0

5.1 Emerging biotechnological innovations in food preservation: nanotechnology, edible coatings, and antimicrobial peptides

5.2 Applications of novel approaches in extending shelf life, reducing food waste, and improving food safety 5.3 Challenges and opportunities in adopting novel food preservation technologies

| Where  | L: Lectures                            | T: Tutorials                     | P: Practical                  |
|--------|----------------------------------------|----------------------------------|-------------------------------|
| Modes  | of In-Semester Assessment:             |                                  | 40 Marks                      |
| 1.     | One sessional test -                   |                                  | 10 Marks                      |
| 2.     | Any one of the following activities li | sted below -                     | 10 Marks                      |
|        | a) Project Report on case study        |                                  |                               |
|        | b) Group discussion                    |                                  |                               |
|        | c) Report of Field Visit               |                                  |                               |
| 3.     | Practical In semester Examination      |                                  | 20 Marks                      |
| Attain | ment Strategies                        |                                  |                               |
| •      | Feedback for each LO                   |                                  |                               |
| •      | Activities                             |                                  |                               |
| SUCC   | ESTED DE ADINICS.                      |                                  |                               |
| 50GG   | Low IM Loosspor M L and Colda          | n D A (2005) Modern Food M       | liarchiology 7thadition CBS   |
| 1.     | Publishers and Distributors Delhi It   | n. D.A. (2005). Modern Food W    | nerobiology. / medition, CBS  |
| 2.     | Currell, B.C., Dam-Mieras, R.C.E.      | (1991). Biotechnological Inno    | ovations in Food Processing.  |
|        | Elsivier.                              | (1), 1), 210000 motogram moto    |                               |
| 3.     | Verma D.K., Ami R. Patel A.R., San     | dhu K.S., Baldi A., Garcia S. (2 | 021). Biotechnical Processing |
|        | in the Food Industry: New Methods,     | Techniques, and Applications. A  | Apple Academic Press          |
| 4.     | Barbosa J, Teixeira P. (2022). Biote   | chnology Approaches in Food I    | Preservation and Food Safety. |

 4. Barbosa J, Teixena F. (2022). Biotechnology Approaches in Food Freservation and Food Safety. Foods.
 5. Biotechnological production of netural

**5.** Bicas J.M., Maróstica Jr.M.R., Pastore G.M. (2016). Biotechnological production of natural ingredients for food industry: First edition. Bentham Books.

| : | MOLECULAR BASIS OF CELL BIOLOGY |
|---|---------------------------------|
| : | MAJOR                           |
| : | 4                               |
| : | 60 (End Sem) + 40 (In Sem)      |
|   | :<br>:<br>:                     |

**Course Description:** This course will provide a comprehensive overview of the structure and functions of cells and their way of interacting and communicating with neighboring cells. Students will be able to acquire a profound knowledge of the ultrastructure of eukaryotic cells, including both plant and animal cells and the cellular organelles. They will be able to delve into the morphology and structural organization of chromosomes, cell division and regulation of cell cycle. Students will explore signaling molecules, cell receptors and quorum sensing. By the end of the course, students will have a substantial knowledge in cell biology, and will enable them to understand the basic cellular structures, functions, and communication processes.

#### Prerequisites

- Basic knowledge on cells
- Concept of chromosomes
- Basic knowledge on cell division and cell cycle

#### **COURSE OBJECTIVES:**

- To have a basic understanding of the fundamentals of cell structure and function.
- To have a lucid understanding of the cellular processes of signaling and transport
- To have a comprehensive understanding of the cellular changes that lead to malignancy
- To elucidate the different developmental pathways lead to both morphogenesis and organogenesis in both animals and plants
- To develop skills through lab experiments and exercises in specific methodologies used in the study of modern cell biology.

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Explain and compare the structure and functions of plant and animal cells

LO 1.1: Describe the history of cell and cell theory

LO 1.2: Demonstrate the ultrastructure of the plant and animal cells

- LO 1.3: Identify the components of the plasma membrane and cell wall and their functions
- LO 1.2: Compare the structural differences between plant and animal cells

CO2: Explain the various organelles that make up the plant and animal cells and their functions

LO 2.1: Demonstrate the structure of various cell organelles

LO 2.2: Explain the functions of various cell organelles

LO 2.3: Identify the various organelles based on their structure

CO3: Analyse the basic structure and functions of chromosomes and regulation of cell cycle

LO 3.1: Describe the morphology and structural organization of chromosomes

LO 3.2: Explain the process of cell division

LO 3.3: Explain the regulation of cell cycle

LO 3.4: Identify the various stages of cell division

CO4: Apply the knowledge on cells and their way of signalling and interacting with neighbouring cells and response to external environment

LO 4.1: Describe the various cell junctions and ways of cell adhesion

LO 4.2: Explain the process of programmed cell death

LO 4.3: Apply the various cell signalling molecules in interacting with neighbouring cells

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       | CO1,    |          |        |
|                         |          |            |       | CO3     |          |        |
| Procedural Knowledge    |          |            | CO4   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3  | PO4  | PO5 | PO6  | PO7  | PO8  | PO9 | PO10 | Average |
|---------|-----|-----|------|------|-----|------|------|------|-----|------|---------|
| CO1     | 2   | 2   | 1    | 2    | 1   | 1    | 1    | 2    | 1   | 1    | 1.4     |
| CO2     | 2   | 2   | 1    | 2    | 1   | 1    | 1    | 2    | 1   | 1    | 1.4     |
| CO3     | 3   | 3   | 1    | 1    | 3   | 1    | 2    | 2    | 1   | 1    | 1.8     |
| CO4     | 3   | 3   | 2    | 2    | 3   | 2    | 3    | 3    | 1   | 1    | 2.3     |
| Average | 2.5 | 2.5 | 1.25 | 1.75 | 2   | 1.25 | 1.75 | 2.25 | 1   | 2.5  |         |

| Biotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Bioi                                                                                                                  | informatics                                                                                                                                                  |                                                                     |                                                                               |          | Dibruge           | arh University |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|-------------------|----------------|--|--|
| Title of the Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ourse                                                                                                                     |                                                                                                                                                              |                                                                     |                                                                               | Mo       | lecular Basis of  | Cell Biology   |  |  |
| Category:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Major                                                                                                                     | Year                                                                                                                                                         | 1<br>1                                                              | Credits                                                                       | 4        | Course Code       | BTCN02         |  |  |
| Instructional h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ours                                                                                                                      | Lecture                                                                                                                                                      | 11                                                                  | Tutorial                                                                      | L        | ab Practical      | Total          |  |  |
| instructional i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | louis                                                                                                                     | 30                                                                                                                                                           |                                                                     | 15                                                                            |          | <u>30</u>         | 75             |  |  |
| Course Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| Unit I: Memb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit I: Membrane Structure and Function: Marks: 15. L:8. T:4. P:4                                                         |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| Unit I: Membrane Structure and Function:Marks:15, L:8,T:4,P:41.1 Structure and function of Plasma Membrane1.2 Molecular transport across the membrane: Passive and Active transport1.3 Molecular transport across the membrane: Passive and Active transport1.3 Molecular transporters.Structural Organization and Function of Intracellular Organelles :1.4 Organelles- their morphologies and functions1.5 Structure & function of the cytoskeleton and their role in motility.Practicala) Demonstration of cells using microscopeMarks:15, L:7,T:3,P:8                                                                                        |                                                                                                                           |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| <ul> <li>2.1 Interaction between Cells and their environment</li> <li>2.2 Extra-cellular space and components of extracellular matrix,</li> <li>2.3 Interaction of cells with ECM, Plant Cell walls,</li> <li>2.4 Cellular Junctions, Cell adhesion.</li> <li>Practical <ul> <li>a) Demonstration of cell organelles using microscope</li> <li>b) Staining of mitochondria in human cheek epithelial cells.</li> </ul> </li> </ul>                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| Unit III: Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit III: Cell Communications and Signal Transduction:Marks:15, L:8,T:4,P:8                                               |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| <ul> <li>3.1 Mechanism<br/>receptors</li> <li>3.2 Types of sig</li> <li>3.3 Classification</li> <li>3.4 Signal transmission</li> <li>3.5 Regulation</li> <li>3.6 Secondary mathematical</li> <li>3.7 Interconnect</li> <li>Practical <ul> <li>a) Study of</li> <li>b) Study of</li> <li>c) Study of</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                       | s of cell<br>gnaling 1<br>on of rec<br>sduction<br>of signa<br>messeng<br>ctedness<br>of barr b<br>of Cell v<br>of polyte | communication<br>molecules<br>ceptors,<br>pathways,<br>ling pathways,<br>ers,<br>of signaling pat<br>ody in the epith<br>iability assay by<br>one chromosome | n: Cell si<br>thways.<br>elial buc<br>y trypan<br>e in <i>Dro</i> . | gnaling and mechanic<br>ccal cell<br>blue exclusion<br><i>sophila</i> larvae. | sm of si | gnal transduction | n and          |  |  |
| Unit IV: Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cycle:                                                                                                                    |                                                                                                                                                              |                                                                     |                                                                               |          | Marks:15,         | L:7,T:4, P:10  |  |  |
| <ul> <li>4.1 Cell division-Mitosis and meiosis</li> <li>4.2 Steps in cell cycle, Their regulation</li> <li>4.3 Molecular basis of cell cycle4.4 Cellular checkpoints of the cell cycle</li> <li>4.5 Regulation and control of cell cycle.</li> <li>Cell death</li> <li>4.6 Apoptosis and other cell death processes,</li> <li>4.7 Biochemical changes in Apoptosis,</li> <li>4.8 Molecular basis of Apoptosis</li> <li>Practical <ul> <li>a) Study of different stages of mitosis in Onion root tip cell/ growing tail of tadpole</li> <li>b) Study of different stages of meiosis in Grasshopper testes/Anther of flower</li> </ul> </li> </ul> |                                                                                                                           |                                                                                                                                                              |                                                                     |                                                                               |          |                   |                |  |  |
| Where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           | L: Lectures                                                                                                                                                  |                                                                     | T: Tutorials                                                                  |          | P: 1              | Practical      |  |  |

| Modes of In-Semester Assessment:                                                           | 40 Marks     |
|--------------------------------------------------------------------------------------------|--------------|
| 1. One sessional test -                                                                    | 10 Marks     |
| 2. Any one of the following activities listed below -                                      | 10 Marks     |
| a) Assignment                                                                              |              |
| b) Group discussion                                                                        |              |
| c) Seminar/Presentation                                                                    |              |
| d) Multiple Choice Questions                                                               |              |
| 3. Practical In semester Examination                                                       | 20 Marks     |
| Attainment Strategies                                                                      |              |
| • Feedback for each LO                                                                     |              |
| Activities                                                                                 |              |
| Suggested Reading:                                                                         |              |
| 1. Molecular Biology of the Cell. Alberts et al. Garland Science, 18-Nov-2014              |              |
| 2. Molecular Cell Biology, Harvey Lodish, W. H. Freeman, 2008                              |              |
| 3. Schaum's Outline of Molecular and Cell Biology, William Stansfield, Jaime S. Colomé, Ra | aúl J. Cano, |
| McGraw Hill Professional, 22-Sep-1996                                                      |              |
| 4. Essential Cell Biology, Bruce Alberts, Garland Pub., 199                                |              |

| NAME OF THE COURSE | : | CELL BIOLOGY AND MICROBIOLOGY |
|--------------------|---|-------------------------------|
| COURSE TYPE        | : | MAJOR                         |
| TOTAL CREDIT       | : | 4                             |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)    |
|                    |   |                               |

**Course Description:** This course will provide a comprehensive overview of the structure and functions of cells and their way of interacting and communicating with neighboring cells. Students will be able to acquire a profound knowledge of the ultrastructure of eukaryotic cells, including both plant and animal cells and the cellular organelles. They will be able to delve into the morphology and structural organization of chromosomes, cell division and regulation of cell cycle.

#### Prerequisites

- Basic knowledge on cells
- Concept of chromosomes
- Basic knowledge on cell division and cell cycle
- Basics in Biochemistry
- Basics in Microbial Physiology

#### **COURSE OBJECTIVES:**

- To identify the basic understanding of the fundamentals of cell structure and function.
- To explain the mechanisms of the cellular processes of signaling and transport of biomolecules.
- To analyze the specific methodologies used in the study of modern cell biology, through lab experiments and exercises
- To have an in-depth knowledge about the diversity of microorganisms and a comprehensive understanding of the basic techniques employed for their isolation, characterization and culture.

Course Outcomes (CO): On completion of this Course, students will be able to –

CO1: Explain and compare the structure and functions of plant and animal cells

LO 1.1: Describe the history of cell and cell theory

- LO 1.2: Demonstrate the ultrastructure of the plant and animal cells
- LO 1.3: Identify the components of the plasma membrane and cell wall and their functions
- LO 1.2: Compare the structural differences between plant and animal cells

CO2: Explain the various organelles that make up the plant and animal cells and their functions

LO 2.1: Demonstrate the structure of various cell organelles

LO 2.2: Explain the functions of various cell organelles

LO 2.3: Identify the various organelles based on their structure

- CO3: Analyse the basic structure and functions of chromosomes and regulation of cell cycle
  - LO 3.1: Describe the morphology and structural organization of chromosomes

LO 3.2: Explain the process of cell division

LO 3.3: Explain the regulation of cell cycle

LO 3.4: Identify the various stages of cell division

CO4: Analyze the role of bacteria in environmental processes and biotechnology.

LO 4.1: Evaluate bacterial roles in natural ecosystems.

LO 4.2: Apply bacterial biotechnology for environmental remediation.

LO 4.3: Assess the potential of bacterial bioproducts in biotechnology.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       | CO1,    |          |        |
|                         |          |            |       | CO3     |          |        |
| Procedural Knowledge    |          |            | CO4   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3  | PO4  | PO5 | PO6  | PO7  | PO8  | PO9 | PO10 | Average |
|---------|-----|-----|------|------|-----|------|------|------|-----|------|---------|
| CO1     | 2   | 2   | 1    | 2    | 1   | 1    | 1    | 2    | 1   | 1    | 1.4     |
| CO2     | 2   | 2   | 1    | 2    | 1   | 1    | 1    | 2    | 1   | 1    | 1.4     |
| CO3     | 3   | 3   | 1    | 1    | 3   | 1    | 2    | 2    | 1   | 1    | 1.8     |
| CO4     | 3   | 3   | 2    | 2    | 3   | 2    | 3    | 3    | 1   | 1    | 2.3     |
| Average | 2.5 | 2.5 | 1.25 | 1.75 | 2   | 1.25 | 1.75 | 2.25 | 1   | 2.5  |         |

| Biotechnolog     | v and Bio    | informatics             |              |                            |           | Dibrug               | arh University   |
|------------------|--------------|-------------------------|--------------|----------------------------|-----------|----------------------|------------------|
| Title of the     | Course       |                         |              |                            | Ce        | ll Biology and M     | ficrobiology     |
| Category:        | Major        | Year                    | 1            | Credits                    | 4         | Course Code          | BTNM02           |
|                  |              | Semester                | II           |                            |           |                      |                  |
| Instructiona     | l hours      | Lectur                  | e            | Tutorial                   | L         | ab Practical         | Total            |
|                  |              | 41                      | Co           | 4<br>urse Outline          |           | 30                   | 75               |
| Unit I.          |              |                         | 0            |                            |           | Morke                | 15 I · 11 T·6    |
| 1                |              |                         |              |                            |           |                      | 13, L. 11, 1.0   |
| 1.1 Membra       | ne struct    | ure and functio         | n (Structu   | re of model membra         | ne. lipi  | d bilayer and mer    | mbrane protein   |
| diffusion        | , osmosis.   | , ion channels, a       | ctive tran   | sport, membrane pu         | mps).     |                      |                  |
| 1.2 Structur     | al organi    | zation and fun          | ction of i   | ntracellular organe        | elles (C  | ell wall, nucleus,   | mitochondria,    |
| Golgi boo        | dies, lysos  | omes, endoplas          | mic reticu   | lum, peroxisomes, p        | lastids,  | vacuoles, chloro     | plast, structure |
| & function       | on of cyto   | skeleton and its        | role in me   | otility).                  |           |                      |                  |
| Due ation le     |              |                         |              |                            |           |                      |                  |
| Practical:       |              |                         |              |                            |           |                      |                  |
| 1. Study of      | polytene     | chromosome in           | Drosoph      | <i>ila/ Chironomous</i> la | rvae.     |                      |                  |
| 2. Study of      | barr body    | y in the epithelia      | al buccal c  | cell                       |           |                      |                  |
| Unit II.         |              |                         |              |                            |           | Marks 15 L           | 10 T·1 P·8       |
| 2.1 Cell divis   | sion and     | cell cycle (Mito        | osis and m   | neiosis, their regulat     | ion, ste  | ps in cell cycle,    | regulation and   |
| control of cell  | l cycle).    | U X                     |              |                            | ,         | 1                    | C                |
|                  |              |                         |              |                            |           |                      |                  |
| Practical:       |              |                         |              |                            |           |                      |                  |
| 1. Study of      | mitosis i    | n onion root tips       | s/ tadpole   | tail.                      |           |                      |                  |
| 2. Study of      | meiosis i    | in flower bud/ g        | rasshoppe    | r testes.                  |           |                      |                  |
| Unit III:        |              |                         |              |                            |           | Marks: 15, L:        | 10, T: 1, P: 8   |
| 3.1 Structure    | of bacte     | <b>ria:</b> nutrition o | rowth me     | dium                       |           |                      |                  |
|                  |              | ,                       |              |                            |           |                      |                  |
| 3.2 Methods      | of steriliz  | ation: pure cult        | ture, isolat | tion, selective metho      | od of isc | olation, cultivation | n, preservation  |
| Practical:       |              |                         |              |                            |           |                      |                  |
| 1                |              |                         |              |                            |           |                      |                  |
| 1. Microbia      | al sub-cult  | turing and prese        | ervation te  | chniques.                  |           |                      |                  |
| 2. Various       | Stanning t   | echniques.              |              |                            |           |                      |                  |
| Unit IV:         |              |                         |              |                            |           | Marks:               | 15, L:10, T: 8   |
| 11 Motob         | olio div     | arsity amon             | n miara      | organisms. Uata            | rotroph   | a autotropha         | nhototronho      |
| chemolithotro    | onder unv    | ersity among            | g microbe    | s)                         | rouopn    | s, autoropiis,       | phototrophs,     |
| chemonuloure     | piis, (ii oi | i, sunti utilizin       | g microbe    |                            |           |                      |                  |
| 4.2 Host para    | asite inter  | raction: Recogn         | nition and   | entry processes of di      | ifferent  | pathogens like ba    | acteria, viruses |
| into animal ai   | nd plant h   | ost cells-pathog        | en-induce    | d diseases in animal       | ls and p  | olants               |                  |
| <b>Dractical</b> |              |                         |              |                            |           |                      |                  |
| Tacucai.         |              |                         |              |                            |           |                      |                  |
| 1. IMViC t       | est.         |                         |              |                            |           |                      |                  |
| 2. Starch h      | ydrolysis    | test.                   |              |                            |           |                      |                  |
| 3. Catalase      | test         |                         |              |                            |           |                      |                  |
| 4. Ferment       | ation of c   | arbohydrates.           |              |                            |           |                      |                  |
| Where            |              | L: Lectures             |              | T: Tutorials               |           | P: I                 | Practical        |

| Modes      | s of In-Semester Assessment:                                                          | 40 Marks    |
|------------|---------------------------------------------------------------------------------------|-------------|
| 1.         | One sessional test -                                                                  | 10 Marks    |
| 2.         | Any one of the following activities listed below -                                    | 10 Marks    |
|            | a) Assignment                                                                         |             |
|            | b) Group discussion                                                                   |             |
|            | c) Seminar/Presentation                                                               |             |
|            | d) Multiple Choice Questions                                                          |             |
| 3.         | Practical In semester Examination                                                     | 20 Marks    |
| Attain     | ment Strategies                                                                       |             |
| •          | Feedback for each LO                                                                  |             |
| •<br>Sugge | Activities                                                                            |             |
| 1 Mol      | ecular Biology of the Cell Alberts et al. Garland Science, 18-Nov-2014                |             |
| 2. Mol     | ecular Cell Biology, Harvey Lodish, W. H. Freeman, 2008                               |             |
| 3. Sch     | aum's Outline of Molecular and Cell Biology, William Stansfield, Jaime S. Colomé, Rat | úl J. Cano, |
| McGra      | aw Hill Professional, 22-Sep-1996                                                     |             |
| 4. Esse    | ential Cell Biology. Bruce Alberts. Garland Pub., 199                                 |             |
| 5. Mic     | robiology: A Text Book of Microorganisms, General and Applied, Charles Edward         |             |
| marsha     | all,F.TBioletti Published P. P.Blakiston's son &co.                                   |             |
| 6. M1c     | robiology, M.J Pelczer and R.D Reid.                                                  |             |
| /.Gene     | eral Microbiology- by K. Y. Stanier .et.al                                            |             |

NAME OF THE COURSE:BIOTECHNOLOGICAL INNOVATIONS IN HORTICULTURECOURSE TYPE:TOTAL CREDIT:3TOTAL MARKS:60 (End Sem) + 40 (In Sem)

**Course Description:** This course explores the cutting-edge biotechnological innovations that are revolutionizing the field of horticulture. Students will delve into the application of biotechnology techniques such as genetic engineering, tissue culture, and molecular breeding to enhance crop productivity, improve plant traits, and address agricultural challenges. Through lectures, hands-on laboratory exercises, and field visits, students will gain a comprehensive understanding of how biotechnology is reshaping the future of horticulture.

#### Prerequisites

- Foundation in Biology
- Familiarity with horticulture or plant science concepts.
- Proficiency in basic laboratory techniques, such as pipetting, measuring, and following experimental protocols

Course Objectives: The objectives of this Course are to -

- Understand the principles and techniques of biotechnology as applied to horticulture.
- Explore the applications of genetic engineering in modifying plant traits for improved productivity, quality, and resilience.
- Learn tissue culture techniques for mass propagation of horticultural crops and conservation of genetic resources.
- Gain insights into molecular breeding strategies for developing new plant varieties with desirable traits.
- Examine the ethical, social, and environmental implications of biotechnological innovations in horticulture.
- Develop critical thinking and problem-solving skills through hands-on laboratory experiments and case studies.

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Understand the principles and techniques of biotechnology as applied to horticulture.

- LO 1.1: Demonstrate comprehension of key principles underlying biotechnological applications in horticulture.
- LO 1.2: Apply biotechnological terminology and concepts to analyze horticultural biotechnology literature and research.
- LO 1.3: Engage in hands-on activities and laboratory exercises to demonstrate proficiency in biotechnological techniques relevant to horticulture.

CO2: Analyze the impact of genetic engineering on plant traits and crop productivity in horticulture.

- LO 2.1: Demonstrate a comprehensive understanding of genetic engineering techniques employed in horticulture.
- LO 2.2: Evaluate the impact of genetic modifications on various plant traits relevant to horticulture.
- LO 2.3: Examine the societal and environmental implications of genetic engineering in horticulture.

**CO3**: Apply tissue culture techniques for mass propagation and conservation of horticultural crops.

- LO 3.1: Demonstrate an understanding of various molecular breeding techniques.
- LO 3.2: Apply molecular breeding techniques to identify and select plants with desirable traits.

• LO 3.3: evaluate the effectiveness and efficiency of molecular breeding approaches in developing new plant varieties with desirable traits.

CO4: Utilize molecular breeding strategies for developing new plant varieties with desirable traits.

- LO 4.1: Recognize common fungal pathogens.
- LO 4.2: Apply diagnostic techniques for fungal infections.
- LO 4.3: Evaluate treatment strategies for fungal infections.

**CO5**: Evaluate the efficacy of biotechnological solutions for crop protection and environmental remediation in horticulture.

- LO 5.1: Analyze the effectiveness of biopesticides and RNA interference (RNAi) technologies in managing pests and diseases in horticultural crops.
- LO 5.2: Evaluate the potential of phytoremediation techniques for environmental cleanup and soil/water remediation in horticultural systems.
- LO 5.3: Interpret experimental data and research findings to make informed decisions regarding the adoption of biotechnological solutions for crop protection and environmental remediation in horticulture.

**C06**: Critically analyze the ethical, social, and environmental implications of biotechnological innovations in horticulture.

- LO 6.1: Evaluate the ethical considerations surrounding the use of biotechnological innovations in horticulture.
- LO 6.2: Examine the social and cultural impacts of biotechnological innovations on agriculture and society.
- LO 6.3: Assess the environmental implications of biotechnological innovations for sustainable agriculture.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse   | Evaluate | Create |
|-------------------------|----------|------------|-------|-----------|----------|--------|
| Factual Knowledge       |          |            |       |           |          |        |
| Conceptual Knowledge    |          | CO1        |       | CO2, CO3, |          |        |
|                         |          |            |       | CO4       |          |        |
| Procedural Knowledge    |          |            |       |           | CO5      |        |
| Metacognitive Knowledge |          |            |       |           |          |        |

#### Mapping of Course Outcomes to Program Outcomes:

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | -    | 1.3     |
| CO2     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO3     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO4     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 3    | 1.5     |
| CO5     | 2   | 2   | 2   | 1   | 2   | 1   | 3   | 1   | 1   | -    | 1.7     |
| Average | 2.0 | 2.0 | 2.0 | 1.0 | 1.2 | 1.0 | 1.4 | 1.0 | 1.0 | 1.7  |         |

3 for highest correlation, 2 for medium correlation and 1 for lowest correlation

| Biotechnolog      | y and Bioinfo    | rmatics                    |               |                  |                    | Dibrugar               | h University   |
|-------------------|------------------|----------------------------|---------------|------------------|--------------------|------------------------|----------------|
| Title of the co   | ourse            | E                          | Siotechnol    | ogical Inno      | vation             | s in Horticultur       | 'e             |
| Catagory          | CEC              | Year                       | 1             | Cradita          | 2                  | Course on to           | DTCE 2         |
| Category          | GEC              | Semester                   | II            | Credits          | 3                  | Course code            | BIGE-2         |
| Instructional     | hours            | Lec                        | ture          | Tutori           | ial                | Lab Practical          | Total          |
| Instructional     | nours            | 2                          | 6             | 04               |                    | 30                     | 60             |
|                   |                  |                            | Course        | Outline          |                    |                        |                |
| Unit 1: Intr      | oduction to B    | iotechnologic              | al Innovatio  | ons in Horticu   | lture              |                        |                |
|                   |                  |                            |               |                  |                    | Marks: 16, L: 7        | ', T: 1, P: 10 |
| 1.1 Overview      | of biotechnol    | logy and its ap            | plications in | horticulture     |                    |                        |                |
| 1.2 Historica     | perspectives     | and current tre            | nds in biote  | chnological in   | novatior           | าร                     |                |
| 1.3 Ethical co    | onsiderations    | and regulatory             | frameworks    | in biotechnolo   | )gV                |                        |                |
| The Editoria of   |                  | ine regulatory             |               |                  | - <b>D</b> J       |                        |                |
| Genetic Fra       | ineering in U    | orticulture                |               |                  |                    |                        |                |
| 1 4 Dringinla     | neering in m     | ainoorina, aon             | a alonina a   | ono oditina on   | dtrange            | onia tachnalagias      |                |
|                   |                  | igineering. gen            |               | ene editing, an  |                    |                        | 1              |
| 1.5 Applicati     | ons of genetic   | engineering ii             | horticultur   | e: pest resistan | ice, hert          | bicide tolerance, an   | d nutritiona   |
| enhancement       |                  |                            |               |                  |                    |                        |                |
| 1.6 Case stud     | lies of genetica | ally modified c            | rops and the  | eir impact on a  | gricultu           | re                     |                |
|                   |                  |                            |               |                  |                    |                        |                |
| Practical:        |                  |                            |               |                  |                    |                        |                |
| a) Prepa          | aration of Imm   | nobilized Seed             | 8             |                  |                    |                        |                |
| b) Isola          | tion and visua   | lization of prot           | toplast under | r microscope     |                    |                        |                |
| c) Dem            | onstration of c  | ene cloning <sup>,</sup> r | estriction en | zyme digestion   | n <u>gele</u> l    | ectrophoresis and i    | ligation       |
| d) Tree           |                  | $\Sigma = 1^{1} = 1^{1}$   | estriction en | Lynne digestion  | ii, <u>s</u> ei ei | cettophoresis, and     | ingution       |
| d) Iran           | stormation of    | E. coli cells.             |               |                  |                    |                        |                |
| Unit 2. There     | no Culture Te    | abrianas far               | Houtionlt     | al Crong         |                    |                        |                |
| Unit 2: 1188      | ue Culture Ie    | configues for              | norticultur   | ai Crops         |                    | Manka 16 I.6           | Т. 1 D. 1      |
| <b>2</b> 1 Tata 1 |                  | -14                        |               |                  |                    | Marks: 10, L: 0        | ), 1: 1, F: 1  |
| 2.1 Introduct     | ion to tissue ci | uture and mici             | opropagatio   | n                |                    |                        | 1              |
| 2.2 Techniqu      | es for in vitr   | o culture of p             | plant tissues | : explant sele   | ction, st          | terilization, and cu   | ilture media   |
| preparation       |                  |                            |               |                  |                    |                        |                |
| M I I 5           | 1. e e           | Ŧ                          | 4             |                  |                    |                        |                |
| Molecular B       | reeding for C    | rop Improvei               | nent          |                  |                    |                        |                |
| 2.3 Principles    | s of molecular   | breeding: mar              | ker-assisted  | selection, gen   | omic se            | lection, and gene p    | yramiding      |
| 2.4 Application   | ons of molecu    | lar breeding in            | horticulture  | : disease resist | ance, ab           | piotic stress tolerand | ce, and yiel   |
| improvement       |                  |                            |               |                  |                    |                        |                |
|                   | · · ·            | C 1 1 1 1                  | 1.            | • 1              | 1, 1               |                        |                |

2.5 Case studies of successful molecular breeding programs in horticultural crops **Practical:** 

- a) Establishment of tissue culture cultures
- b) Preparation of explants
- c) Sterilization and culture initiation
- d) Subculturing and multiplication of explant

#### Unit 3: Biotechnological Approaches to Crop Protection

Marks: 16, L: 7, T: 1, P: 10 3.1 Biotechnological strategies for pest and disease management in horticulture

3.2 Use of biopesticides, plant-derived compounds, and RNA interference (RNAi) technologies

#### **Bioremediation and Phytoremediation Techniques**

- 3.3 Biotechnological approaches for soil and water remediation using plants
- 3.4 Use of horticultural crops for phytoremediation of heavy metals, organic pollutants, and contaminants
- 3.5 Case studies of successful phytoremediation projects and their implications for sustainable agriculture

#### **Practical:**

a) Preparation of biopesticide extracts

b) Testing the efficacy of *Trichoderma* against fungal pathogen

- c) Testing the efficacy of biopesticides against common pests and diseases
- d) Investigate the phytoremediation potential of horticultural crops for soil or water cleanup

#### Unit 4: Precision Agriculture and Remote Sensing Technologies

#### Marks: 12, L:6, T:1, P:0

4.1 Integration of biotechnology with precision agriculture techniques for optimal crop management

4.2 Use of remote sensing technologies, GIS (Geographic Information System), and drones in horticulture

#### Future Directions and Challenges in Biotechnological Innovations

4.4 Emerging trends in biotechnology and their potential impact on horticulture

4.5 Challenges and opportunities in translating biotechnological innovations into practical solutions for agriculture

4.6 Final project presentations and discussions on innovative biotechnological applications in horticulture

| Where  | <i>L: Lectures</i>                        | T: Tutorials | P: Practical |
|--------|-------------------------------------------|--------------|--------------|
| Modes  | of In-Semester Assessment:                |              | 40 Marks     |
| 1.     | One sessional test -                      |              | 10 Marks     |
| 2.     | Any one of the following activities liste | ed below -   | 10 Marks     |
|        | a) Project Report on case study           |              |              |
|        | b) Group discussion/Presentation          |              |              |
| 3.     | Practical In semester Examination         |              | 20 Marks     |
| Attain | ment Strategies                           |              |              |
| •      | Feedback for each LO                      |              |              |
| •      | Activities                                |              |              |
|        |                                           |              |              |
|        |                                           |              |              |
| SUGG   | ESTED READINGS:                           |              |              |

- 1. Suza. W. and Lee. D.(2021). Genetics, Agriculture, and Biotechnology. Iowa State University.
- 2. Ratledge. C. and Kristiansen. H. (2006). Basic Biotechnology. 3rd Edition. Cambridge University Press.
- 3. Peter. K.V. (2013). Biotechnology in Horticulture: Methods and Applications. New India Publishing Agengy, New Delhi
- 4. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons.

| NAME OF THE COURSE | : | FUNDAMENTALS OF MICROBIOLOGY |
|--------------------|---|------------------------------|
| COURSE TYPE        | : | MAJOR                        |
| TOTAL CREDIT       | : | 4                            |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)   |

**Course Description:** The Fundamentals of Microbiology course aims to provide students with a comprehensive understanding of microorganisms, including their structure, function, growth, genetics, and the roles they play in various environments. The course includes both theoretical and practical components to give students hands-on experience in microbiological techniques.

#### Prerequisites

- Basics of Cell Biology
- Basics in Biochemistry
- Basics in Microbial Physiology

Course Objectives: The objectives of this Course are to -

- Identify and describe the major types of microorganisms, including bacteria, viruses, fungi, algae, and protozoa.
- Understand the structural and functional differences between prokaryotic and eukaryotic microorganisms.
- Develop practical laboratory skills for handling and studying bacteria.

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Define the fundamental principles of microbiology.

- LO 1.1: Identify and describe the basic structure and morphology of bacteria.
- LO 1.2: Explain the principles of bacterial growth and metabolism.
- LO 1.3: Discuss the significance of bacterial taxonomy and classification.

CO2: Identify common bacterial pathogens and their mechanisms of pathogenesis.

- LO 2.1: Identify major bacterial pathogens.
- LO 2.2: Understand the mechanisms of bacterial pathogenesis.
- LO 2.3: Analyze the epidemiology and clinical manifestations of bacterial infections.

CO3: Apply microbiological techniques for bacterial isolation, cultivation, and characterization.

- LO 3.1: Proficiently execute bacterial isolation techniques.
- LO 3.2: Cultivate bacterial cultures using appropriate media and conditions.
- LO 3.3: Characterize bacterial isolates through biochemical and molecular methods.

CO4: Analyze the role of bacteria in environmental processes and biotechnology.

- LO 4.1: Evaluate bacterial roles in natural ecosystems.
- LO 4.2: Apply bacterial biotechnology for environmental remediation.
- LO 4.3: Assess the potential of bacterial bioproducts in biotechnology.

CO5: Evaluate the impact of antibiotics and antimicrobial resistance.

- LO 5.1: Analyze mechanisms of antibiotic action and resistance.
- LO 5.2: Assess the epidemiology and public health implications of antimicrobial resistance.
- LO 5.3: Propose strategies for antimicrobial stewardship and resistance mitigation.

CO6: Synthesize knowledge of bacteriology to address real-world challenges.

- LO 6.1: Apply bacteriological principles to analyze and propose solutions for public health challenges.
- LO 6.2: Utilize bacteriological concepts in environmental and ecological contexts.
- LO 6.3: Innovate and collaborate to tackle emerging issues in biotechnology and industry.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       | CO1      |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       | CO4     | CO5      |        |
| Procedural Knowledge    |          |            | CO3   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          | CO6    |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 2   | 1   | 1   | 2   | 1   | 1   | 2   | 1   | 1    | 1.4     |
| CO2     | 3   | 3   | 2   | 2   | 3   | 2   | 1   | 2   | 1   | 1    | 2.0     |
| CO3     | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 1   | 1    | 1.8     |
| CO4     | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 1   | 3    | 2.0     |
| CO5     | 2   | 3   | 2   | 2   | 3   | 2   | 1   | 2   | 1   | 1    | 1.9     |
| CO6     | 3   | 3   | 3   | 2   | 3   | 3   | 2   | 3   | 2   | 2    | 2.6     |
| Average | 2.3 | 2.5 | 2.0 | 1.8 | 2.5 | 2.0 | 1.5 | 2.2 | 1.2 | 1.5  |         |

**3** for highest correlation, **2** for medium correlation and **1** for lowest correlation

| Centre for Bio                                                                                                                                                                                                                                                            | technology ar                                                                                                                                                           | ıd Bioinforma                                                                                                                                  | tics                                                                                                                    |                                                                                                                                 |                                                                         | Dibrug                                                                                                                   | arh University                                                                                       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Title of the cou                                                                                                                                                                                                                                                          | ırse                                                                                                                                                                    |                                                                                                                                                | Fundamentals of Microbiology                                                                                            |                                                                                                                                 |                                                                         |                                                                                                                          |                                                                                                      |  |  |  |  |
| Category                                                                                                                                                                                                                                                                  | Major                                                                                                                                                                   | Year                                                                                                                                           | 2<br>III                                                                                                                | Credits                                                                                                                         | 4                                                                       | Course code                                                                                                              | BTNC03                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                         | Lec                                                                                                                                            | ure                                                                                                                     | Tutoria                                                                                                                         | 1<br>1                                                                  | Lab Practical                                                                                                            | Total                                                                                                |  |  |  |  |
| Instructional h                                                                                                                                                                                                                                                           | ours                                                                                                                                                                    | 3                                                                                                                                              | 7                                                                                                                       | 08                                                                                                                              |                                                                         | 30                                                                                                                       | 75                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                | Course (                                                                                                                | Dutline                                                                                                                         |                                                                         |                                                                                                                          |                                                                                                      |  |  |  |  |
| Unit 1: Basics                                                                                                                                                                                                                                                            | s of microbio                                                                                                                                                           | logy                                                                                                                                           |                                                                                                                         |                                                                                                                                 |                                                                         |                                                                                                                          |                                                                                                      |  |  |  |  |
| <ul> <li>1.1 Structu</li> <li>1.2 Metho</li> <li>preservation.</li> <li>Practical: <ul> <li>a) Asepti</li> <li>b) Bacter</li> <li>clinica</li> <li>c) Cultur</li> <li>cultiva</li> </ul> </li> </ul>                                                                      | ural organisat<br>ds of sterili<br>c techniques:<br>ial isolation:<br>l specimens.<br>e media prep<br>tting bacteria.                                                   | ion in bacteria<br>zation; pure<br>Practice steril<br>Learn various<br>paration: Prep                                                          | : bacterial nu<br>culture, isol<br>e handling o<br>s methods fo<br>are and ster                                         | utrition, growt<br>lation, selecti<br>f equipment a<br>r isolating ba<br>ilize differen                                         | h medit<br>ve met<br>nd med<br>cteria f<br>t types                      | Marks: 12, 1<br>um and growth c<br>thod of isolatio<br>lia to prevent con<br>from environmen<br>of culture med           | L: 6, T: 2, P: 6<br>urve.<br>n, cultivation,<br>tamination.<br>tal samples or<br>ia suitable for     |  |  |  |  |
| 2.1 Metab<br>hydrocarbon tr<br>and their impo<br>2.2 Microl<br><b>Practical:</b><br>a) Micros<br>Gram<br>b) Bioche<br>proper                                                                                                                                              | olic diversity<br>ransformation<br>rtance in biot<br>bial diversity,<br>scopic examin<br>staining, and<br>emical tests: I<br>ties.                                      | among mic<br>); autotrophs,<br>echnology.<br>Systematic banation: Use mi<br>other staining<br>Perform bioch                                    | roorganisms:<br>phototrophs<br>acteriology, r<br>croscopy to<br>techniques.<br>emical assay                             | Heterotroph<br>; chemolithotr<br>new approache<br>observe bacte<br>s to identify b                                              | s, orga<br>rophs; (<br>es to ba<br>rial mor<br>acterial                 | Marks: 16, L<br>notrophs (metha<br>(iron, sulfur utiliz<br>cterial taxonomy<br>rphology, Simple<br>species based or      | : 9, T: 2, P: 12<br>ne utilization,<br>zing microbes)<br>(ribotyping).<br>e Staining,<br>n metabolic |  |  |  |  |
| Unit 3: Bacte                                                                                                                                                                                                                                                             | rial and Arc                                                                                                                                                            | haeal Kingdo                                                                                                                                   | m:                                                                                                                      |                                                                                                                                 |                                                                         |                                                                                                                          |                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                         | -                                                                                                                                              |                                                                                                                         |                                                                                                                                 |                                                                         | Marks:                                                                                                                   | 16, L: 11, P: 6                                                                                      |  |  |  |  |
| <ul> <li>3.1 Classificati</li> <li>3.2 General cha</li> <li>Spirullina, Clo</li> <li>3.3 Archaea: G</li> <li>3.4 Classificati</li> <li>microbes, meth</li> <li>Practical: <ul> <li>a) Perfort</li> <li>antibic</li> <li>b) Design</li> <li>remedit</li> </ul> </li> </ul> | ion (Bergy's laracters, Mod<br>estridium spp.<br>General charac-<br>tion and pro-<br>nanogens, me<br>m culture-ba<br>otic susceptibi-<br>n and conduc-<br>iate contamin | Manual for Sy<br>el organism: <i>E</i><br>perties: acido<br>thane product<br>sed methods<br>ility profiles.<br>et experiments<br>ated environm | stematic Bac<br>Schericia con<br>Inature, Phylophilic, alka<br>ion; Biotechn<br>to isolate b<br>s to evaluate<br>ients. | eteriology).<br><i>li, Staphylloco</i><br>llum: Crenarci<br>lophilic, ther<br>nological pote<br>acteria from<br>e the ability o | <i>accus</i> sp<br>haeota,<br>mophil<br>ntial of<br>clinical<br>of bact | pp., <i>Streptococcus</i><br>Euryarchaeota.<br>ic, barophilic an<br>extremophiles.<br>I samples and d<br>eria to degrade | spp., <i>Bacillus,</i><br>nd osmophilic<br>etermine their<br>pollutants and                          |  |  |  |  |
| Unit 4: Virus                                                                                                                                                                                                                                                             | es and Other                                                                                                                                                            | · Infectious A                                                                                                                                 | gents:                                                                                                                  |                                                                                                                                 |                                                                         |                                                                                                                          |                                                                                                      |  |  |  |  |
| 4.1 Genera<br>4.2 Lytic a<br>Fungi and Mo                                                                                                                                                                                                                                 | al characters,<br>and lysogenic                                                                                                                                         | chemical natu<br>cycles. Viroid                                                                                                                | re, structure<br>ls and Prions                                                                                          | of TMV, HIV,                                                                                                                    | bacter                                                                  | Marks: 16<br>iophages.                                                                                                   | , L:11, P: 6                                                                                         |  |  |  |  |
| 4.3 Genera<br>Aspergillus spj<br>Protozoa:                                                                                                                                                                                                                                | al characters,<br>o, <i>Penicillum</i>                                                                                                                                  | structure, rep<br>spp. Neurospo                                                                                                                | roduction, di<br>ora spp.                                                                                               | versity, life cy                                                                                                                | vele. Mo                                                                | odel organism: S                                                                                                         | accharomyces,                                                                                        |  |  |  |  |

4.4 General characters, structure, reproduction, diversity, life cycle. Model protozoan: *Plasmodium* spp., *Amoeba, Paramecium*.

#### **Practical:**

- a) Gram staining of yeast
- b) Lactophenol cottonblue staining for mold
- c) Staining of protozoan and identification

| Where  | L: Lectures                            | T: Tutorials | P: Practical |
|--------|----------------------------------------|--------------|--------------|
| Modes  | of In-Semester Assessment:             | 40 Marks     |              |
| 1.     | One sessional test -                   |              | 10 Marks     |
| 2.     | Any one of the following activities li | sted below - | 10 Marks     |
|        | a) Assignment                          |              |              |
|        | b) Group discussion                    |              |              |
|        | c) Seminar/Presentation                |              |              |
|        | d) Multiple Choice Questions           |              |              |
| 3.     | Practical In semester Examination      |              | 20 Marks     |
| Attain | ment Strategies                        |              |              |
| •      | Feedback for each LO                   |              |              |
| •      | Activities                             |              |              |

#### **SUGGESTED READINGS:**

1. Marshall, C. E., & Bioletti, F. T. (1971). Microbiology: A Text Book of Microorganisms, General and Applied. P. Blakiston's Son and Company.

2. Pelczer, M. J., & Reid, R. D. (2001). Microbiology. McGraw Hill Education; 5th edition.

3. Stanier, R. Y., et al. (1999). General Microbiology. Palgrave Macmillan 5e (Intern Ed).

4. Waksman, S. A. (2020). Soil Microbiology. Alpha Edition.

5. Willey, J. M; Sherwood, L. Woolverton, C. J; Prescott, L. M., New York : McGraw-Hill Higher Education. (2008). Prescott, Harley, and Klein's microbiology.

| NAME OF THE COURSE | : | MOLECULAR BIOLOGY          |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MAJOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |

**Course Description:** This course provides an in-depth exploration of the molecular mechanisms that underlie the function and regulation of genes and genomes. It covers the fundamental processes of DNA replication, repair, transcription, and translation and the regulation of gene expression in prokaryotic and eukaryotic systems. The course also delves into modern techniques used in molecular biology research and their applications in biotechnology, medicine, and genetics.

#### Prerequisites

- Cell Biology
- General Chemistry
- Organic Chemistry
- Biochemistry
- Microbiology

COURSE OBJECTIVES: The objectives of this Course are to -

- Understand the structure and function of nucleic acids.
- Comprehend the molecular mechanisms of DNA replication, transcription, and translation.
- Explore the regulation of gene expression in different organisms.
- Gain practical experience with key molecular biology techniques.
- Appreciate the applications of molecular biology in various fields.

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO1:** Describe the organisation and packaging of genetic material in prokaryotes and eukaryotes.

- LO1.1: Define the key terms and concepts associated with genetic material,
- LO1.2: Illustrate the structure of nucleic acids, chromatin, histones, and nucleosomes
- LO1.3: Explain how genetic material is organized in prokaryotic and eukaryotic cells

CO2: Apply knowledge of nucleases and restriction enzymes to DNA manipulation techniques.

- LO2.1: Recall the functions and types of nucleases and restriction enzymes.
- LO2.2: Understanding: Explain how nucleases and restriction enzymes interact with DNA.
- LO2.3: Use knowledge of nucleases and restriction enzymes in practical DNA manipulation techniques.

CO3: Analyze the differences between prokaryotic and eukaryotic replication mechanisms.

- LO3.1: Explain the basic processes of DNA replication in prokaryotic and eukaryotic cells.
- LO3.2: Apply knowledge of replication mechanisms to identify and differentiate replication components in various cell types.
- LO3.3: Compare and contrast the replication mechanisms in prokaryotic and eukaryotic cells, identifying the major differences and reasons behind these differences

CO4: Apply knowledge of the genetic code and aminoacyl tRNA synthases in translation.

• LO4.1: Recall the components and roles of the genetic code and aminoacyl tRNA synthases in translation.
- LO4.2: Explain how the genetic code directs protein synthesis and how aminoacyl tRNA synthases charge tRNAs with the correct amino acids.
- LO4.3: Understand the genetic code and aminoacyl tRNA synthases to predict the sequence of amino acids from a given mRNA sequence.

CO5: Examine how chromatin structure, histone modifications, and chromatin remodelling complexes influence gene expression.

- LO5.1: Explain the roles of chromatin structure, histone modifications, and chromatin remodelling complexes in regulating gene expression.
- LO5.2: Use knowledge of chromatin dynamics to predict how changes in histone modifications or chromatin remodelling might affect gene expression in a given context.
- LO5.3: Analyze experimental data showing the effects of specific histone modifications or chromatin remodelling on gene expression, identifying patterns and drawing conclusions.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply    | Analyse | Evaluate | Create |
|-------------------------|----------|------------|----------|---------|----------|--------|
| Factual Knowledge       | CO1      |            |          |         |          |        |
| Conceptual Knowledge    |          |            |          | CO3     |          |        |
| Procedural Knowledge    |          |            | CO2, CO4 |         |          |        |
| Metacognitive Knowledge |          |            |          |         | CO5      |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 3   | 2   | 1   | 2   | 2   | 1   | 2   | 2   | 1   | 1    | 1.7     |
| CO2     | 3   | 2   | 2   | 1   | 3   | 2   | 3   | 2   | 1   | 1    | 2.0     |
| CO3     | 3   | 3   | 1   | 2   | 2   | 1   | 2   | 2   | 1   | 1    | 1.8     |
| CO4     | 3   | 2   | 2   | 1   | 2   | 2   | 3   | 2   | 1   | 1    | 1.9     |
| CO5     | 3   | 3   | 2   | 2   | 3   | 2   | 3   | 2   | 1   | 1    | 2.2     |
| Average | 3.0 | 2.4 | 1.6 | 1.6 | 2.4 | 1.6 | 2.6 | 2.0 | 1.0 | 1.0  |         |

| Biotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and Bioinforn                                                                                                                           | natics                                                                                                                                        |                                                                                                                                        |                                                                                                                                     |                                                                     | Dibrugar                                                                                 | rh University         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------|--|
| Title of the cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rse                                                                                                                                     |                                                                                                                                               |                                                                                                                                        |                                                                                                                                     |                                                                     | MOLECULAR                                                                                | BIOLOGY               |  |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Major                                                                                                                                   | Year<br>Semester                                                                                                                              | 2<br>III                                                                                                                               | Credits                                                                                                                             | 4                                                                   | Course code                                                                              | BTNC04                |  |
| Instructional ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ours                                                                                                                                    | Lect                                                                                                                                          | ture                                                                                                                                   | Tutoria                                                                                                                             | al                                                                  | Lab Practical                                                                            | Total                 |  |
| mstructional no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Juis                                                                                                                                    | 4                                                                                                                                             | 0                                                                                                                                      | 05                                                                                                                                  |                                                                     | 30                                                                                       | 75                    |  |
| LINIT 1. CEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ETIC MATI                                                                                                                               | TOTAL AND                                                                                                                                     | Course (                                                                                                                               | <u>Dutline</u>                                                                                                                      |                                                                     | Maulta 15 I . 1                                                                          | 0 T. 1 D. 15          |  |
| UNIT 1: GENETIC MATERIAL AND ITS PACKAGINGMarks: 15, L: 10, T: 1, P: 151.1 Nucleic acid as genetic material, Genome organization in prokaryotes and eukaryotes1.2 Chromatin structure and function. Heterochromatin, euchromatin.1.3 Histones and non-histone proteins, general properties of histone, nucleosomes, solenoid structure,<br>packaging of DNA, satellite DNA.1.4 Nucleases and restriction enzymes, Denaturation of DNA and Reassociation, Kinetics. C-value paradox.Practical<br>a) Isolation of Genomic DNA from Eukaryotic Cells and Prokaryotic cells<br>b) Quantification and purity assessment of DNA using spectrophotometry<br>c) Digestion of extracted DNA with restriction enzymes<br>d) Analysis of restriction fragments using agarose gel electrophoresisUNIT 2: REPLICATIONMarks: 15, L: 10, T: 2, P: 152.1 DNA replication: mechanism, the replicons, origin, primosome & replisomes.   |                                                                                                                                         |                                                                                                                                               |                                                                                                                                        |                                                                                                                                     |                                                                     |                                                                                          |                       |  |
| <ul> <li>2.2 Properties of prokaryotic and eukaryotic DNA polymerases.</li> <li>2.3 Synthesis of leading and lagging strand. Difference between prokaryotic and eukaryotic replication.</li> <li>Practical <ul> <li>a) Extraction of total RNA from eukaryotic cells.</li> <li>b) Quantification and assessment of RNA.</li> <li>c) Synthesis of cDNA from extracted RNA.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                                               |                                                                                                                                        |                                                                                                                                     |                                                                     |                                                                                          |                       |  |
| UNIT 3: TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NSCRIPTIO                                                                                                                               | N & TRANS                                                                                                                                     | SLATION                                                                                                                                | •                                                                                                                                   |                                                                     | Marks: 15, L:1                                                                           | 0, T: 1 P: 12         |  |
| 3.1 Prokaryoti<br>elongation and<br>3.2 RNA proce<br>3.3 Ribosomes<br>3.4 Direction o<br>elongation, tran<br>3.5 Post-transla<br>proteins, disulf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c transcriptic<br>termination;<br>ssing and RN<br>structure and<br>f protein synt<br>islocation & t<br>ational modifi-<br>ide bond form | on; promoters<br>Properties of<br>A editing. Inh<br>function, gen<br>thesis (Dintzis<br>termination ar<br>ications- Prote-<br>nation. Inhibit | , properties<br>RNA polyme<br>ibitors of tra<br>actic code, and<br>s experiment<br>ad the role of<br>colytic cleava<br>tors of transla | of bacterial<br>rase I, II and I<br>nscription.<br>ninoacyl tRNA<br>). Formation of<br>respective fac-<br>age, covalent r<br>ation. | RNA po<br>III.<br>A synthas<br>of transla<br>ctors invo<br>nodifica | blymerase. Step<br>ses.<br>ation initiation co<br>olved therein.<br>tions, glycosylation | mplex, chain<br>on of |  |
| UIII 4. NEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ULATION                                                                                                                                 | T GENE EA                                                                                                                                     | A KESSIUN                                                                                                                              |                                                                                                                                     |                                                                     | wiai ks; 13, 1                                                                           |                       |  |
| <ul> <li>4.1 Overview of Gene Expression; Constitutive vs. Regulated Genes, Levels of Gene Regulation,<br/>Differences between Prokaryotic and Eukaryotic Gene Expression</li> <li>4.2 Regulation of Transcription in Prokaryotes; Operon Model: Structure and Function of Operons; Lac<br/>Operon: Inducible System, Trp Operon: Repressible System; Transcription Factors and Sigma Factors:</li> <li>4.3 Regulation of Transcription in Eukaryotes; Chromatin Structure and Remodeling, Role of Histones<br/>and Nucleosomes, Histone Modification (Acetylation, Methylation), Chromatin Remodeling Complexes</li> <li>4.4 Transcription Factors and Enhancers; General vs. Specific Transcription Factors;, Enhancers and<br/>Silencers, Mediator Complex</li> <li>4.5 Epigenetic Regulation: DNA Methylation, Non-coding RNAs (IncRNAs, miRNAs), X-Chromosome<br/>Inactivation and Genomic Imprinting</li> </ul> |                                                                                                                                         |                                                                                                                                               |                                                                                                                                        |                                                                                                                                     |                                                                     |                                                                                          |                       |  |
| w nere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L: Le                                                                                                                                   | ectures                                                                                                                                       | Î                                                                                                                                      | : <i>Iutorials</i>                                                                                                                  |                                                                     | <i>P: Pr</i>                                                                             | actical               |  |
| Modes of In-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | emester Asse                                                                                                                            | essment:                                                                                                                                      |                                                                                                                                        |                                                                                                                                     |                                                                     |                                                                                          | 40 Marks              |  |

| 1.          | One sessional test -                                                            | 10 Marks |
|-------------|---------------------------------------------------------------------------------|----------|
| 2.          | Any one of the following activities listed below -                              | 10 Marks |
|             | a) Assignment                                                                   |          |
|             | b) Group discussion                                                             |          |
|             | c) Seminar/Presentation                                                         |          |
|             | d) Multiple Choice Questions                                                    |          |
| 3.          | Practical In semester Examination                                               | 20 Marks |
| Attain<br>• | ment Strategies<br>Feedback for each LO                                         |          |
| •           | Activities                                                                      |          |
| SUGG        | ESTED READINGS:                                                                 |          |
| 1.          | Molecular Biology of the Gene, James D. Watson, Pearson/Benjamin Cummings, 2008 |          |
| 2.          | Molecular Biology, Robert Weaver, McGraw-Hill Education, 11-Feb-2011            |          |
| 3.          | Molecular Biology of the Cell. Alberts et al. Garland Science, 18-Nov-2014      |          |
| 4.          | Molecular Cell Biology, Harvey Lodish, W. H. Freeman, 2008                      |          |

- Essential Molecular Biology: A Practical Approach" by Terry Brown
   Molecular Biology: Principles and Practice" by Michael M. Cox, Jennifer Doudna, and Michael O'Donnell

# NAME OF THE COURSE: GENETICS AND BIOSTATISTICSCOURSE TYPE: MINORTOTAL CREDIT: 4TOTAL MARKS: 60 (End Sem) + 40 (In Sem)

**Course Description:** Students will gain a comprehensive understanding of genes, chromosomes, mendelian genetics, and their deviations. They will be able to solve Mendelian genetics problems. They will also gain a firm knowledge of the molecular basis of mutations, their origin, and the role of mutagens. The students will gain in-depth knowledge of genetic disorders and diseases. They will be able to understand population genetics and the application of Hardy Weinberg equilibrium in population-based studies. This course provides an introduction to fundamental concepts and techniques in statistical analysis. Students will learn to describe and summarize data, analyze relationships between variables, make predictions, and draw inferences from data

# Prerequisites

Basics of Cell Biology Basics of Molecular Biology Basics of Biochemistry

COURSE OBJECTIVES: The objectives of this Course are to -

- To identify the fundamentals of genetics and principles of mendelian genetics.
- To explain the condition relating to mutation and chromosomal disorder.
- To explain the impact of different practices in cultivation of mushroom
- To analyze and develop problems relating to genetics and other biological data using statistics.
- Basic knowledge of mathematics and familiarity with computer applications.

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Have a basic understanding of the founding concepts of genetics and deviations from Mendelian genetics

- LO 1.1: Understand the importance of mendelian genetics
- LO 1.2: Describe monohybrid and dihybrid cross
- LO 1.3: Explain the various deviations from mendelian genetics
- LO 1.4: Apply test cross and back cross tests to solve problems related to genetics

CO2: Understand the significance of extra-chromosomal inheritance and its effect on consecutive generations

- LO 2.1: Analyse the structure and function of mitochondria and plastids
- LO 2.2: Analyse the effect of plastid and mitochondrial inheritance in the consecutive generations
- LO2.3: Demonstrate the association of mitochondrial and plastid inherited disorders
- CO3: Demonstrate the concept of mutation in genes and its association with genetic diseases
  - LO 3.1: Understand mutation and its types and cause of mutation
  - LO 3.2: Demonstrate the genetic diseases associated with mutation in genes.

CO4: Analyse genetic changes in the population and its association with diseases

- LO 4.1: Understand Hardy Weinberg equilibrium and its importance in population-based studies
- LO 4.2: Analyse the effects of additive gene action in phenotype expression
- CO5: Apply chromosome mapping methods in gene map construction
  - LO 2.1: Describe linkage and crossing over
  - LO 2.2: Understand the various chromosome mapping techniques in genetic map construction
  - LO 2.3: Apply the concept of chromosome mapping methods in gene mapping

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO1, CO2   |       | CO4     |          |        |
| Procedural Knowledge    |          |            | СОЗ,  |         |          |        |
|                         |          |            | CO5   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 3   | 1   | 1   | 2   | 1   | 2   | 3   | 1   | 1    | 1.7     |
| CO2     | 2   | 3   | 1   | 1   | 2   | 1   | 2   | 3   | 1   | -    | 1.6     |
| CO3     | 3   | 2   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | -    | 1.8     |
| CO4     | 3   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | -    | 1.7     |
| CO5     | 3   | 2   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | -    | 1.8     |
| Average | 2.6 | 2.6 | 1.6 | 1.0 | 2.4 | 1.0 | 2.4 | 2.4 | 1.0 | 1    |         |

| Biotechnology                                                                                      | Biotechnology and Bioinformatics Dibrugarh University |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------|-------------------------|---------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Title of the cou                                                                                   | rse                                                   |                   |                  | GENE                    | TICS A        | ND BIOSTATIST             | TICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Categorv                                                                                           | Minor                                                 | Year              | 2                | Credits                 | 4             | Course code               | BTNC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 85                                                                                                 |                                                       | Semester          | III              | Tratani                 | - 1           | Lal Duration              | T-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instructional ho                                                                                   | ours                                                  |                   | ure<br>7         |                         | ai            | Lab Practical             | 10tai<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                    |                                                       | 5                 | /<br>Course (    | )utline                 |               | 50                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Unit 1:                                                                                            |                                                       |                   | Course C         | Jutilite                |               | Marks: 15. L: 6           | . T: 2. P: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Mendelian pri                                                                                      | nciples :                                             |                   |                  |                         |               |                           | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1.1 Dominance                                                                                      | , segregation                                         | , independent     | assortment.      |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 1.2 Concept of                                                                                     | gene : Allele                                         | , multiple alle   | les.             |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Extensions of                                                                                      | Mendelian p                                           | rinciples :       | · ,              | . 1                     | . ,           | · 1                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1.3 Codominance, incomplete dominance, gene interactions, pleiotropy, penetrance and expressivity, |                                                       |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Practical                                                                                          | kage and cros                                         | sing over.        |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| • Study t                                                                                          | he inheritance                                        | pattern of flo    | wer color in     | pea plants ( <i>Pis</i> | sum sativ     | <i>um</i> ) and determine | if it follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Mendel                                                                                             | ian genetics.                                         | puttern of no     |                  | peu pluites (1 /2       | Server Server |                           | If it follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Explore                                                                                            | e and analyze g                                       | enetic inheritar  | nce patterns th  | at deviate from         | classical     | Mendelian genetics        | , focusing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| incomp                                                                                             | lete dominance                                        | e, co-dominanc    | e, and epistasi  | s in plant pigm         | entation.     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $\rightarrow$ Species                                                                              | : Mirabilis jale                                      | apa (Four o'clo   | ck flower) for   | incomplete dor          | ninance.      |                           | f and the second s |  |  |
| $\rightarrow$ Species                                                                              | : ABO Blood                                           | Type in huma      | ins (simulated   | using plant a           | nalogs fo     | r educational purp        | oses) for co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| $\rightarrow$ Species                                                                              | : Corn (Zea m                                         | avs) for epistasi | is in kernel col | or.                     |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Unit 2:                                                                                            |                                                       |                   |                  |                         |               | Marks 15: L               | .:6 T:2 P:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Mutations and Chromosomal aberration                                                               |                                                       |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 2.1 Molecular basis of mutation-types, spontaneous mutation, induced mutations                     |                                                       |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 2.2 Radiation a                                                                                    | nd chemical                                           | mutagens.         |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Practical:                                                                                         |                                                       | 1                 | · c·             | · D 1·1                 | 1             | . 1 .1                    | ,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Determine the                                                                                      | genetic linkag                                        | ge between sp     | ecific genes     | in Drosophila           | melanog       | gaster and map th         | eir positions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                    | IIIC.                                                 |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Unit 3                                                                                             |                                                       |                   |                  |                         |               | Marks 15 L:               | 8 T:2 P: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <b>Descriptive St</b>                                                                              | atistics:                                             |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3.1 Introduction                                                                                   | n to data type                                        | s;                |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3.2 Measures o                                                                                     | f central tend                                        | ency and disp     | ersion.          |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Probability dis                                                                                    | stributions:                                          |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3.3 Binomial,                                                                                      | Inormal                                               |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>Practical</b>                                                                                   | 1 HOI Mai                                             |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| a) Solving                                                                                         | g of statistica                                       | l problem on o    | descriptive st   | atistics and pr         | obability     | distribution using        | g Excel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| b) Solvin                                                                                          | g of statistica                                       | l problem on o    | lescriptive st   | atistics and pr         | obability     | distribution using        | g SPSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                    | -                                                     | -                 | -                |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Unit 4:                                                                                            |                                                       |                   |                  |                         |               | Marks 15 L:               | 6 T: 2 P:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Test of signific                                                                                   | ance:                                                 |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4.1 Students t-t                                                                                   | test (one and t                                       | two),             |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4.2 Chi-square                                                                                     | variance (on                                          | e way and two     | way classifi     | cations                 |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Practical                                                                                          |                                                       | e way and two     | , way ciassiii   |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| a) Solvin                                                                                          | g test of signi                                       | ficance using     | Excel.           |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| b) Solving test of significance using SPSS                                                         |                                                       |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| When I. Leatures T. Tutonials D. Duration                                                          |                                                       |                   |                  |                         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <i>mere</i>                                                                                        | <b>L</b> . 1                                          |                   |                  | 1. 1 <i>u</i> tortu     | 13            | <b>I</b>                  | . 1 raciicul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Modes of In-S                                                                                      | emester Asse                                          | essment:          |                  |                         |               |                           | 40 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1. One se                                                                                          | ssional test -                                        |                   |                  |                         |               |                           | 10 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 2. Any or                                                                                          | ne of the follo                                       | wing activitie    | s listed below   | V -                     |               |                           | 10 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

- a) Assignment
- b) Group discussion
- c) Seminar/Presentation
- d) Multiple Choice Questions
- 3. Practical In semester Examination

## **Attainment Strategies**

- Feedback for each LO
- Activities

## **SUGGESTED READINGS:**

- 1. Genetics: The continuity of life, D. J. Fairbanks and W. H. Andersen, Brooks/Cole Pub., 1999
- 2. Introduction to Genetic Analysis- Vol. 10, Anthony J.F. Griffiths, W. H. Freeman, 2008
- 3. Applied Statistics Process, B. Biswas, New Central Book Agency, Kolkata
- 4. Genetics of Population, J.P Jain and V.T Pravakaran South Asian Publishers (P) Ltd. New Delhi.
- 5. Statistical techniques for studying genotype-environment introduction, V.T Pravakaran and J.P. Jain.
- 6. A Biostatistical and population oriented Approach, South Asian Publisher (P) Ltd. New Delhi.

20 Marks

| : | <b>BIOTECHNOLOGY FOR HUMAN WELFARE</b> |
|---|----------------------------------------|
| : | GENERIC ELECTIVE COURSE                |
| : | 3                                      |
| : | 60 (End Sem) + 40 (In Sem)             |
|   | :<br>:<br>:                            |

**Course Description:** This course explores the applications of biotechnology in addressing various challenges related to human welfare, including healthcare, agriculture, environment, and industry. Students will learn about the principles, techniques, and ethical considerations of biotechnology and its role in improving human quality of life.

# Prerequisites

- Foundation in Biology
- Proficiency in basic laboratory techniques, such as pipetting, measuring, and following experimental protocols

Course Objectives: The objectives of this Course are to -

- Understand the fundamental concepts and principles of biotechnology.
- Explore the applications of biotechnology in human health, agriculture, environment, and industry.
- Analyze the ethical, social, and environmental implications of biotechnological advancements.
- Develop critical thinking and problem-solving skills through case studies and hands-on activities.

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO1:** Understand the basic biotechnological concepts.

- LO 1.1: Demonstrate comprehension of key principles underlying biotechnology.
- LO 1.2: Describe the basic principles of molecular biology and genetics, showcasing foundational knowledge in biological sciences.
- LO 1.3: Demonstrate proficiency in using key tools and techniques in biotechnology.

**CO2:** Understand the application of biotechnology in medicine.

- LO 2.1: Comprehend the principles and applications of genetic engineering and gene therapy.
- LO 2.2: Analyze the process of drug development and production in pharmaceutical biotechnology.
- LO 2.3: Demonstrate proficiency in diagnostic techniques in disease diagnosis and monitoring.

**CO3**: Understand the applications of biotechnology in agriculture.

- LO 3.1: Explain the concept of genetically modified organisms (GMOs) and their role in crop improvement.
- LO 3.2: Describe agricultural biotechnology strategies, showcasing knowledge of biotechnological interventions aimed at enhancing crop productivity and resilience.
- LO 3.3: Discuss the use of bio-fertilizers and bio-pesticides in sustainable agriculture practices.

CO4: Understand the role of biotechnology in Environmental Conservation

- LO 4.1: Explain the process of bioremediation and the role of microorganisms in the degradation of environmental pollutants.
- LO 4.2: Analyze waste management strategies employing biotechnological methods, showcasing understanding of sustainable waste treatment options.
- LO 4.3: Discuss the principles of conservation biotechnology and its applications in preserving biodiversity

CO5: Gain proficiency in Industrial Biotechnology.

- LO 5.1: Comprehend the principles of bioprocess engineering, enabling them to design and optimize fermentation processes for the production of desired bioproducts.
- LO 5.2: Demonstrate knowledge of the production of biofuels, bioplastics, and biomaterials.
- LO 5.3: Apply enzyme technology in industrial settings, identifying enzymes suitable for various applications and optimizing reaction conditions to enhance efficiency and yield in biotechnological processes.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse   | Evaluate | Create |
|-------------------------|----------|------------|-------|-----------|----------|--------|
| Factual Knowledge       |          |            |       |           |          |        |
| Conceptual Knowledge    |          | CO1        |       | CO2, CO3, |          |        |
|                         |          |            |       | CO4       |          |        |
| Procedural Knowledge    |          |            |       |           | CO5      |        |
| Metacognitive Knowledge |          |            |       |           |          |        |

# Mapping of Course Outcomes to Program Outcomes:

| СО/РО   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | -    | 1.3     |
| CO2     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO3     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO4     | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 3    | 1.5     |
| CO5     | 2   | 2   | 2   | 1   | 2   | 1   | 3   | 1   | 1   | -    | 1.7     |
| Average | 2.0 | 2.0 | 2.0 | 1.0 | 1.2 | 1.0 | 1.4 | 1.0 | 1.0 | 1.7  |         |

3 for highest correlation, 2 for medium correlation and 1 for lowest correlation

| Biotechnology                                                                      | and Bioinform                                  | matics                                            |                               | Dibrugarh University           |           |               |               |  |  |
|------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------|--------------------------------|-----------|---------------|---------------|--|--|
| Title of the cou                                                                   | irse                                           |                                                   |                               | BIOTECHN                       | OLOGY     | FOR HUMAN     | WELFARE       |  |  |
| Category                                                                           | GEC                                            | Year<br>Semester                                  | 2<br>III                      | Credits                        | 3         | Course code   | BTGE-3        |  |  |
| Instructional h                                                                    | 211#6                                          | Lect                                              | ure                           | Tutoria                        | al        | Lab Practical | Total         |  |  |
|                                                                                    | Juis                                           | 2:                                                | 5                             | 05                             |           | 30            | 60            |  |  |
|                                                                                    |                                                |                                                   | Course C                      | Dutline                        |           |               |               |  |  |
| Unit 1: Introd                                                                     | luction to Bi                                  | otechnology                                       | <i>с</i> и • ,•               |                                |           | Marks: 12, L: | 5, T: 1, P: 6 |  |  |
| 1.1 Overview of<br>1.2 Basic princ<br>1.3 Tools and to                             | iples of mole<br>echniques in                  | ogy: history, d<br>cular biology<br>biotechnology | and genetics<br>PCR, DNA      | scope                          | gene edit | ing           |               |  |  |
| Practical                                                                          |                                                |                                                   |                               |                                |           |               |               |  |  |
| a) Microt<br>b) Isolatio                                                           | on of DNA fr                                   | om plant                                          |                               |                                |           |               |               |  |  |
| Unit 2: Biotec                                                                     | chnology in N                                  | Aedicine                                          |                               |                                |           |               |               |  |  |
| 21 Constin on                                                                      | -inninn d                                      | and the many                                      |                               |                                |           | Marks: 12, L: | 5, T: 1, P: 6 |  |  |
| <ul><li>2.1 Genetic eng</li><li>2.2 Pharmaceur</li><li>2.3 Diagnostic</li></ul>    | tical biotechn<br>techniques: F                | ology: drug d<br>CR, ELISA, l                     | evelopment a<br>piosensors    | and production                 | 1         |               |               |  |  |
| Practical<br>a) ELISA for protein detection                                        |                                                |                                                   |                               |                                |           |               |               |  |  |
| b) Antimi                                                                          | crobial susce                                  | ptibility test b                                  | y Disc diffus                 | sion Test                      |           |               |               |  |  |
| Unit 3: Biotec                                                                     | chnology in A                                  | griculture                                        |                               |                                |           | Marks: 16. L: | 5. T: 1. P: 6 |  |  |
| <ul><li>3.1 Genetically</li><li>3.2 Agricultura</li><li>3.3 Bio-fertiliz</li></ul> | modified org<br>l biotechnolo<br>ers and bio-p | ganisms (GM0<br>gy: pest resist<br>esticides      | Ds) and crop<br>ance, herbici | improvement<br>de tolerance, a | and stres | s tolerance   | -,,           |  |  |
| Practical                                                                          |                                                |                                                   |                               |                                |           |               |               |  |  |
| a) Seed G                                                                          | ermination a                                   | nd Growth Ob                                      | servation of                  | GM and non                     | GM crop   | 0S            |               |  |  |
| b) Assess                                                                          | the microbia                                   | l diversity in s                                  | oil samples.                  |                                |           |               |               |  |  |
| c) Isolatio                                                                        | on and stainin                                 | ng of <i>Rhizobiu</i>                             | <i>m</i> spp. from            | leguminous pl                  | lant root |               |               |  |  |
| d) Isolatio                                                                        | on and stainin                                 | ig of arbuscula                                   | ar mycorrhiza                 | a in grass root                | s.        |               |               |  |  |
| Unit 4: Biotec                                                                     | chnology and                                   | the Environ                                       | ment                          |                                |           | Marks: 12. L: | 5. T: 1. P: 6 |  |  |
| 4.1 Bioremedia                                                                     | tion: microbi                                  | al degradation                                    | of pollutant                  | S                              |           | ,             | , ,           |  |  |
| 4.2 Waste Man                                                                      | agement Usir                                   | ng Biotechnolo                                    | ogical Appro                  | aches                          |           |               |               |  |  |
| 4.3 Conservation                                                                   | on biotechnol                                  | ogy: preservir                                    | ng biodiversi                 | ty                             |           |               |               |  |  |
| Practical                                                                          |                                                |                                                   |                               |                                |           |               |               |  |  |
| a) Investi                                                                         |                                                |                                                   |                               |                                |           |               |               |  |  |
| b) Evalua                                                                          |                                                |                                                   |                               |                                |           |               |               |  |  |
| Unit 5: Industrial Biotechnology                                                   |                                                |                                                   |                               |                                |           |               |               |  |  |
| Sint 5. Inuds                                                                      | a ini Divitell                                 |                                                   |                               |                                |           | Marks: 12, L: | 5, T: 1, P: 6 |  |  |
| 5.1 Bioprocess engineering: fermentation and bioreactors                           |                                                |                                                   |                               |                                |           |               |               |  |  |
| 5.2 Production                                                                     | of biofuels, b                                 | bioplastics, and                                  | d biomaterial                 | ls                             |           |               |               |  |  |
| 5.3 Enzyme tec                                                                     | ennology and                                   | its industrial a                                  | applications                  |                                |           |               |               |  |  |
| Practical                                                                          | Practical                                      |                                                   |                               |                                |           |               |               |  |  |

| a)    | Isolation and staining of yeast from  | n grapes.                         |              |
|-------|---------------------------------------|-----------------------------------|--------------|
| b)    | Demonstrate the process of fermen     | tation in bread making.           |              |
| c)    | Estimate alcohol quantity in fruit ju | lices by specific gravity method. |              |
| Where | L: Lectures                           | T: Tutorials                      | P: Practical |
|       |                                       |                                   |              |
| Modes | of In-Semester Assessment:            |                                   | 40 Marks     |
| 1.    | One sessional test -                  |                                   | 10 Marks     |
| 2.    | Any one of the following activities   | 10 Marks                          |              |
|       | a) Project Report on case study       |                                   |              |
|       | b) Group discussion                   |                                   |              |
|       | c) Report of Field Visit              |                                   |              |
| 3.    | Practical In semester Examination     |                                   | 20 Marks     |
| Attai | nment Strategies                      |                                   |              |
| •     | Feedback for each LO                  |                                   |              |
| ٠     | Activities                            |                                   |              |
|       |                                       |                                   |              |

# **SUGGESTED READINGS:**

- 1. Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- 2. Patel AH. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited.
- 3. Purohit S.S. (2010). Agricultural Biotechnology. 3rd Edition. Agrobios (India)
- 4. Walker. J.M., Spencer., J.F.T. and Spencer.A.L.R. (2004). Environmental Microbiology: Methods and Protocols. Humana Totowa, NJ
- 5. Leadbetter, J. (Ed.). (2005). Environmental microbiology (Vol. 397). Gulf Professional Publishing.
- 6. Brooks. G.F., Carroll K.C., Butel J.S. and Morse S.A. (2007). Medical Microbiology. 24th edition. McGraw Hill Publication.
- 7. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology.4th edition. Elsevier.

| NAME OF THE COURSE | : | GENETICS                   |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MAJOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |
|                    |   |                            |

**Course Description:** Students will gain a comprehensive understanding of genes, chromosomes, mendelian genetics, and their deviations. They will be able to solve Mendelian genetics problems. They will also gain a firm knowledge of the molecular basis of mutations, their origin, and the role of mutagens. The students will gain in-depth knowledge of genetic disorders and diseases. They will be able to understand population genetics and the application of Hardy Weinberg equilibrium in population-based studies. The students will acquire a comprehensive understanding of chromosome mapping and apply it in the construction of genetic maps. By the end of the course, students will grasp a concrete knowledge of genetics, be able to analyze genetic data, understand patterns of genetic inheritance, and contribute to the advancements of research based on genetic studies.

# **Prerequisites:**

- Concept of genes and chromosomes
- Genetic diseases
- Concept of mitochondria and plastids

Course Objectives: The objectives of this Course are to -

- Understand the founding concepts of Genetics and cytogenetics
- Discern the significance of extra-chromosomal inheritance and its effect on consecutive generations
- Comprehend the significant consequences of any change in genetic constitution resulting in disease and disorder
- Understand the dynamics of population genetics
- Decipher the use of markers to create linkage maps

# COURSE OUTCOME (CO): On completion of this course, students will be able to -

CO1: Have a basic understanding of the founding concepts of genetics and deviations from Mendelian genetics

- LO 1.1: Understand the importance of mendelian genetics
- LO 1.2: Describe monohybrid and dihybrid cross
- LO 1.3: Explain the various deviations from mendelian genetics
- LO 1.4: Apply test cross and back cross tests to solve problems related to genetics

CO2: Understand the significance of extra-chromosomal inheritance and its effect on consecutive generations

- LO 2.1: Analyse the structure and function of mitochondria and plastids
- LO 2.2: Analyse the effect of plastid and mitochondrial inheritance in the consecutive generations
- LO2.3: Demonstrate the association of mitochondrial and plastid inherited disorders

CO3: Demonstrate the concept of mutation in genes and its association with genetic diseases

- LO 3.1: Understand mutation and its types and cause of mutation
- LO 3.2: Demonstrate the genetic diseases associated with mutation in genes.

CO4: Analyse genetic changes in the population and its association with diseases

- LO 4.1: Understand Hardy Weinberg equilibrium and its importance in population-based studies
- LO 4.2: Analyse the effects of additive gene action in phenotype expression

CO5: Apply chromosome mapping methods in gene map construction

- LO 2.1: Describe linkage and crossing over
- LO 2.2: Understand the various chromosome mapping techniques in genetic map construction
- LO 2.3: Apply the concept of chromosome mapping methods in gene mapping

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO1, CO2   |       | CO4     |          |        |
| Procedural Knowledge    |          |            | СОЗ,  |         |          |        |
|                         |          |            | CO5   |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 2   | 3   | 1   | 1   | 2   | 1   | 2   | 3   | 1   | 1    | 1.7     |
| CO2     | 2   | 3   | 1   | 1   | 2   | 1   | 2   | 3   | 1   | -    | 1.6     |
| CO3     | 3   | 2   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | -    | 1.8     |
| CO4     | 3   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | -    | 1.7     |
| CO5     | 3   | 2   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | -    | 1.8     |
| Average | 2.6 | 2.6 | 1.6 | 1.0 | 2.4 | 1.0 | 2.4 | 2.4 | 1.0 | 1    |         |

| Biotechnolo                                                                                      | gy and Bio                                                       | oinformatics                                                                         |                                                |                                                       |                                                                  | Dibru                                     | garh University                                       |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|
| Title of the 0                                                                                   | Course                                                           |                                                                                      |                                                |                                                       |                                                                  |                                           | GENETICS                                              |
| Category:                                                                                        | Major                                                            | Year                                                                                 | 2                                              | Credits                                               | 4                                                                | Course                                    | BTNC05                                                |
|                                                                                                  | 5                                                                | Semester                                                                             | IV                                             |                                                       |                                                                  |                                           |                                                       |
| Instructional                                                                                    | hours                                                            | Lectur                                                                               | re                                             | Tutorial                                              | Lab Practical                                                    |                                           | Total                                                 |
|                                                                                                  |                                                                  | 30                                                                                   |                                                | 15                                                    | 30                                                               |                                           | 75                                                    |
|                                                                                                  |                                                                  |                                                                                      |                                                | <b>Course Outli</b>                                   | ne                                                               |                                           |                                                       |
| Mendelian                                                                                        | Genetics                                                         |                                                                                      |                                                |                                                       |                                                                  | Marks: 12                                 | 2, L:8, T:4, P:12                                     |
| Background<br>principle of<br>Inheritance i<br>Variation in<br>Epistasis Per<br><b>Practical</b> | , history<br>Segregatio<br>n Humans<br>Mendelia<br>netrance a    | and Concept<br>on, Dihybrid ex<br>s with example<br>n Genetics: De<br>nd Expressivit | of inher<br>xperimen<br>ss.<br>eviation f<br>y | itance, Mende<br>and law of I<br>from Mendelis        | el's experiment: M<br>ndependent Assorti<br>sm- Multiple Allele  | Aonohybrid<br>ment, Domir<br>es and Domir | experiment and<br>hance Mendelian<br>hance Relations, |
| a) Solv<br>b) Solv                                                                               | ing Problering Proble                                            | ems related to                                                                       | Mendelia                                       | an Genetics<br>1 Mendelian C                          | enetics                                                          |                                           |                                                       |
| c) Wor                                                                                           | king with                                                        | OMIM databa                                                                          | se                                             |                                                       |                                                                  |                                           |                                                       |
| Extranuclea                                                                                      | ar inherit                                                       | ance                                                                                 |                                                |                                                       |                                                                  | Ma                                        | rks:12, L:7, T:4                                      |
| The Origins<br>Inheritance,<br>Mitochondia<br>disorders in                                       | of Mitoch<br>Cellular s<br>Il inherita<br>plants                 | ondria and Pla<br>tructure and Fu<br>nce associated                                  | stids, Ce<br>inctions<br>genetic               | llular structure<br>of Plastids, Pl<br>disorders in 1 | e and Functions of I<br>astid Inheritance.<br>Humans, Plastid In | Mitochondri<br>heritance as               | a, Mitochondrial<br>sociated genetic                  |
| Mutations a                                                                                      | and Chro                                                         | mosomal aber                                                                         | ration                                         |                                                       |                                                                  | Ma                                        | rks:12, L:8,T:4                                       |
| Molecular b<br>mutagens<br>Genetic diso<br>Chromosom<br>Sex-Linked                               | asis of mu<br>rder and t<br>al aberrati<br>disease in            | tation—types,<br>heir inheritanc<br>ion in Humans<br>heritance                       | spontane<br>e<br>with exa                      | eous mutation                                         | , induced mutations<br>equential disorders                       | s, Radiation a                            | and chemical<br>s;                                    |
| Population                                                                                       | genetics                                                         |                                                                                      |                                                |                                                       |                                                                  | Marks:1                                   | 2, L:7,T:3,P:12                                       |
| Hardy-Wein<br>Genetic char<br>Speciation:<br>Quantitative<br>Additive Ge<br>Variation            | berg equil<br>nges in po<br>Types, iso<br>genetics<br>ene Action | ibrium,<br>pulation, Rand<br>lation mechani<br>1 and Continu                         | om and 1<br>sms lead<br>ous Vari               | non-random m<br>ling to speciat<br>ation, Hetero      | ating, Selection, G<br>ion<br>sis and Inbreeding                 | enetic drift<br>Depression                | , Environmental                                       |
| <b>Practical</b><br>a) Solv<br>b) Solv                                                           | ving Problering Problering Problering                            | ems related to<br>ems related to                                                     | populatio<br>quantitat                         | on genetics<br>ive genetics                           |                                                                  |                                           |                                                       |
| Chromoson                                                                                        | ne mappin                                                        | ng                                                                                   |                                                |                                                       |                                                                  | Marks:12                                  | , L: 8, T: 4, P: 6                                    |
| Linkage stu<br>Correction<br>Applications                                                        | dies: The<br>and mapp<br>s of Chron                              | Discovery of<br>bing function,<br>nosome Mappi                                       | f Linkag<br>Three-F<br>ng, Reco                | e and Crossi<br>Factor Linkag<br>ombination, Cr       | ng-Over, Two-Fac<br>e, Physical Chron<br>ossing-Over and C       | tor Linkage<br>nosome Ma<br>omplementa    | , Map Distance<br>pping, Practical<br>tion.           |
| Practical                                                                                        |                                                                  |                                                                                      |                                                |                                                       |                                                                  |                                           |                                                       |

1. Solving Problems related to linkage analysis and chromosome mapping

| Where  | L: Lectures                                 | T: Tutorials                      | P: Practical               |
|--------|---------------------------------------------|-----------------------------------|----------------------------|
| Modes  | of In-Semester Assessment:                  |                                   | 40 Marks                   |
| 1.     | One sessional test -                        |                                   | 10 Marks                   |
| 2.     | Any one of the following activities list    | ed below -                        | 10 Marks                   |
|        | a) Assignment                               |                                   |                            |
|        | b) Group discussion                         |                                   |                            |
|        | c) Seminar/Presentation                     |                                   |                            |
|        | d) Multiple Choice Questions                |                                   |                            |
| 3.     | Practical In semester Examination           |                                   | 20 Marks                   |
| Attain | ment Strategies                             |                                   |                            |
| ٠      | Feedback for each LO                        |                                   |                            |
| •      | Activities                                  |                                   |                            |
| SUGGE  | TED READINGS                                |                                   |                            |
| • Ger  | netics: The continuity of life, D. J. Fairb | oanks and W. H. Andersen, Brook   | s/Cole Pub., 1999          |
| • Intr | roduction to Genetic Analysis- Vol. 10,     | Anthony J.F. Griffiths, W. H. Fre | eeman, 2008                |
| • Ger  | netics: Analysis of Genes and Genom         | es, Daniel L. Hartl, Elizabeth W  | V. Jones, Jones & Bartlett |
| Lea    | arning, 2009                                |                                   |                            |
| • Ger  | netics Monroe W Strickburger Macmi          | llian 1976                        |                            |

| : | BIOINSTRUMENTATION         |
|---|----------------------------|
| : | MAJOR                      |
| : | 4                          |
| : | 60 (End Sem) + 40 (In Sem) |
|   | :<br>:<br>:                |

**Course Description:** Bioinstrumentation is a multidisciplinary course focusing on the principles and applications of instruments used in biological and different research fields. It covers the design, function, and use of bioanalytical instruments essential for life science, biotechnology, pharmacology, Chemistry, and physics. Students explore sensors, transducers, signal processing, and data acquisition systems, gaining knowledge in measuring physiological parameters and analyzing biological data. The course includes theoretical lectures, hands-on laboratory sessions, and projects on real-world applications in biological sciences and research. With prerequisites in biology, physics, and Chemistry, this course prepares students for careers in biomedical engineering, medical device development, and clinical engineering, equipping them with the skills to operate and maintain advanced bioinstrumentation systems.

# Prerequisites

- Fundamental understanding of biological molecules and cellular structures.
- Knowledge of chemical principles and reactions.
- Understanding of organic molecules, their structures, and reactions
- General Physical principles of optics, electromagnetism, and mechanics.

COURSE OBJECTIVES: The objectives of this Course are to -

Course Outcomes (CO): On completion of this Course, students will be able to –

CO1: Understand key terms related to analytical instruments and equipment used in biological research.

- LO 1.1: List various types of analytical instruments used in biological research.
- LO 1.2: Explain the basic principles and functions of common analytical instruments.
- LO 1.3: Classify the common analytical instruments according to their working principle

CO2: Analyze the laboratory's waste disposal practices for compliance with environmental regulations.

- LO 2.1: Identify the different types of waste generated in a laboratory.
- LO 2.2: Explain the environmental and health impacts of improper waste disposal.
- LO 2.3: Implement proper waste disposal procedures in the laboratory.

CO3: Acquire in-depth knowledge of the theory, instrumentation, and applications of various microscopy and spectrophotometry techniques.

- LO 3.1: Classify microscopic and spectrophotometric techniques according to their working principle.
- LO 3.2: Identify the key components and instrumentation required for each type of microscopy and spectroscopy
- LO 3.3: Explain the applications, strengths and limitations of each microscopic and spectrophotometric technique used in biological research.

CO4: Compare working principles and application of different chromatographic techniques

- LO 4.1: Explain how each chromatographic technique separates mixtures based on different principles
- LO 4.2: Use knowledge of chromatographic principles to choose appropriate techniques for specific separation tasks.
- LO 4.3: Compare the advantages and limitations of different chromatographic techniques in terms of resolution, sensitivity, and suitability for various applications

CO5: Compare working principles and application of different centrifugation techniques

- LO 5.1: Explain the working principles of each centrifugation technique, including how particles are separated based on size, shape, and density.
- LO 5.2: Demonstrate the use of different centrifugation techniques in laboratory settings to separate and purify biological samples.
- LO 5.3: Compare and contrast the advantages and limitations of different centrifugation techniques in terms of resolution, speed, scalability, and sample compatibility.
- LO 5.4: Analyze experimental data from centrifugation experiments to interpret separation efficiency and identify factors influencing experimental outcomes.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate  | Create |
|-------------------------|----------|------------|-------|---------|-----------|--------|
| Factual Knowledge       |          | CO1        |       |         |           |        |
| Conceptual Knowledge    |          |            |       |         |           |        |
| Procedural Knowledge    |          |            |       | CO2     | CO3, CO4, |        |
|                         |          |            |       |         | CO5       |        |
| Metacognitive Knowledge |          |            |       |         |           |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 1   | 2   | 1   | 2   | 2   | 1   | 3   | 2   | 1   | 1    | 1.6     |
| CO2     | 2   | 3   | 1   | 1   | 2   | 2   | 2   | 1   | 1   | 3    | 1.8     |
| CO3     | 3   | 2   | 2   | 1   | 3   | 2   | 3   | 2   | 1   | 1    | 2.0     |
| CO4     | 3   | 3   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | 1    | 2.0     |
| CO5     | 3   | 3   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | 1    | 2.0     |
| Average | 2.4 | 2.6 | 1.6 | 1.2 | 2.6 | 1.4 | 2.8 | 1.8 | 1.0 | 1.4  |         |

| Biotechnology    | Biotechnology and Bioinformatics Dibrugarh University           |                    |          |         |    |               |        |  |  |  |
|------------------|-----------------------------------------------------------------|--------------------|----------|---------|----|---------------|--------|--|--|--|
| Title of the cou | ırse                                                            | BIOINSTRUMENTATION |          |         |    |               |        |  |  |  |
| Category         | Major                                                           | Year<br>Semester   | 2<br>IV  | Credits | 4  | Course code   | BTNC06 |  |  |  |
| Instantional h   |                                                                 | Lect               | ure      | Tutori  | al | Lab Practical | Total  |  |  |  |
| Instructional h  | Instructional hours         40         05         30         75 |                    |          |         |    |               |        |  |  |  |
|                  |                                                                 |                    | Course ( | Outline |    |               |        |  |  |  |

Marks: 12, L: 8, T: 1, P: 10

**Unit 1:** General introduction to analytical instruments and equipment, Operation and safety measures in biology, Handling of samples and equipment, Troubleshooting common issues, Calibration and maintenance of different instruments, Good Laboratory Practices, Waste disposal and environmental considerations

## Practical

- a) Demonstration of basic operation and safety protocols for commonly used analytical instruments
- b) Hands-on practice with instrument setup, calibration, and shutdown procedures.
- c) Hands-on training on proper sample handling techniques, including pipetting, weighing, and dilution.

d) Hands-on demonstration of safe disposal practices for hazardous chemicals and biohazardous materials

Unit 2: Introduction to Microscopy and SpectrophotometryMarks: 12, L: 8, T: 2, P: 82.1 Overview of microscopy, Historical development of microscopes, Basic principles of light microscopy,<br/>Resolution and magnification, Contrast mechanismsMarks: 12, L: 8, T: 2, P: 8

2.2 Theory, instrumentation & applications of- Brightfield microscopy, Darkfield Microscopy, Phase contrast microscopy, Differential Interference Contrast (DIC) microscopy, Fluorescence Microscopy, Confocal microscopy,

2.3 Theory, instrumentation & applications of UV-VIS spectrophotometry, IR spectroscopy, Mass Spectrometry and NMR.

## Practical

- a) Hands-on training on operating and adjusting light microscopes for optimal imaging.
- b) Observation of prepared slides to understand the principles of light microscopy.
- c) Measurement of absorbance spectra for various chemical compounds using a UV-VIS spectrophotometer.

## **Unit 3: Separation technique – Chromatography**

Marks: 12, L: 8, T: 1, P: 6

Overview of chromatography, Historical development, Principle, types and applications of different chromatographic methods. Partition and Adsorption chromatography, Ion-exchange chromatography, Size exclusion and affinity chromatography.

# Practical

a) Hands-on practice with column chromatography setups for separation of mixtures.

Unit: 4: Separation technique – Electrophoresis Marks: 12, L: 8, T: 1, P: 6 Basic principles of electrophoresis, Factors affecting electrophoretic mobility, Theory, instrumentation and applications of Native PAGE, SDS PAGE, Agarose gel electrophoresis, Isoelectric focusing, Two-Dimensional Gel Electrophoresis

## Practical

a) Hands-on training on setting up and running gel electrophoresis experiments (e.g., native PAGE, SDS-PAGE, agarose gel electrophoresis).

# Unit 5: Centrifugation

Basic principles of centrifugal force; Factors affecting sedimentation: particle size, shape, density, and medium viscosity; RCF and RPM; Types of Centrifugation; Working principle, types and applications of different centrifuges

# Practical

a) Demonstration of centrifugation protocols for isolating cellular components and biomolecules from biological samples.

| Where | L: Lectures | T: Tutorials | P: Practical |
|-------|-------------|--------------|--------------|
|       |             |              |              |

Modes of In-Semester Assessment:

40 Marks

- 1. One sessional test -
- 2. Any one of the following activities listed below
  - a) Assignment
  - b) Group discussion
  - c) Seminar/Presentation
  - d) Multiple Choice Questions
- 3. Practical In semester Examination

## **Attainment Strategies**

- Feedback for each LO
- Activities

# **SUGGESTED READINGS:**

- 1. Principles of Instrumental Analysis" by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 2. Biological Safety: Principles and Practices" by Diane O. Fleming, Debra L. Hunt
- 3. Basic Laboratory Methods for Biotechnology" by Lisa A. Seidman, Cynthia J. Moore
- 4. Analytical Chemistry: A Practical Approach" by Bryan M. Ham, Aihui MaHam
- 5. Calibration and Validation of Analytical Methods: A Sampling of Current Approaches" by Mark Stauffer
- 6. Maintenance and Troubleshooting of Laboratory Instruments" by Prakash Singh Bisen, Anjana Sharma
- 7. Good Laboratory Practice: Nonclinical Laboratory Studies Concise Reference" by M. S. Traul
- 8. Chemical Laboratory Safety and Security: A Guide to Developing Standard Operating Procedures" by National Research Council
- 9. Fundamentals of Light Microscopy and Electronic Imaging" by Douglas B. Murphy and Michael W. Davidson
- 10. Introduction to Optical Microscopy" by Jerome Mertz
- 11. Spectrophotometry & Spectrofluorimetry: A Practical Approach" by Michael G. Gore
- 12. Chromatography: Concepts and Contrasts" by James M. Miller
- 13. Principles and Techniques of Biochemistry and Molecular Biology" by Keith Wilson and John Walker
- 14. Methods of Cell Separation" by D. Rickwood

20 Marks

10 Marks 10 Marks

| NAME OF THE COURSE | : | BIOSTATISTICS AND DATA ANALYSIS |
|--------------------|---|---------------------------------|
| COURSE TYPE        | : | MAJOR                           |
| TOTAL CREDIT       | : | 4                               |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)      |

**Course Description:** This course provides an introduction to fundamental concepts and techniques in statistical analysis. Students will learn to describe and summarize data, analyze relationships between variables, make predictions, and draw inferences from data.

## Prerequisites

• Basic knowledge of mathematics and familiarity with computer applications.

Course Objectives: By studying this course, the students will be able to

- Understand and apply measures of central tendency and dispersion to describe and summarize data.
- Analyze relationships between variables using correlation and regression analysis.
- Apply probability theory to solve problems involving random experiments and sample spaces.
- Use probability distributions to generate random samples and analyze their properties.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Define data types, explain their characteristics, and calculate measures of central tendency and dispersion for a given dataset.

**LO1:** Define and differentiate between different types of data.

LO2: Calculate and interpret measures of central tendency and dispersion for a given dataset.

**LO3:** Explain the characteristics and appropriate uses of each measure of central tendency and dispersion.

CO2: Apply correlation and regression analysis to analyze relationships between variables.

LO1: Understand the concept of correlation and its significance in data analysis.

**LO2:** Calculate and interpret the correlation coefficient to determine the strength and direction of a relationship between two variables.

**LO3:** Perform simple linear regression analysis to predict one variable from another and interpret the results.

**CO3:** Describe concepts of probability, including random experiments, sample spaces, basic laws, conditional probability, and independence.

LO1: Define and describe random experiments and sample spaces.

LO2: Apply the basic laws of probability to solve problems.

**LO3:** Calculate conditional probabilities and determine whether events are independent or dependent.

**CO4:** Apply probability distributions to generate random samples and analyze their properties using statistical software.

**LO1:** Understand the characteristics and applications of the Binomial, Poisson, and Normal distributions.

**LO2:** Use statistical software to generate random samples from these distributions and analyze their properties.

LO3: Apply the properties of these distributions to solve real-world problems in various fields.

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          | CO1        |       |         |          |        |
| Conceptual Knowledge    |          |            | CO3   | CO2     |          |        |
| Procedural Knowledge    |          |            |       | CO4     |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

# Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 1   | 3   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO2     | 1   | 3   | 1   | 1   | 2   | 1   | 2   | 1   | 1   | 1    | 1.4     |
| CO3     | 1   | 3   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO4     | 1   | -   | 1   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.3     |
| Average | 1.0 | 3.0 | 1.0 | 1.0 | 2.3 | 1.0 | 1.5 | 1.0 | 1.0 | 1.0  |         |

3 for highest correlation, 2 for medium correlation and 1 for lowest correlation

| Biotechnology and Bioinform         | natics           |                 |                   |            | Dibrugar             | h University       |  |  |
|-------------------------------------|------------------|-----------------|-------------------|------------|----------------------|--------------------|--|--|
| Title of the course                 |                  |                 | BIOSTAT           | ISTICS     | AND DATA ANA         | LYSIS              |  |  |
| Category Major                      | Year<br>Semester | 2<br>IV         | Credits           | 4          | Course code          | BTNC07             |  |  |
| Instructional hours                 | Lect             | ure             | Tutori            | al         | Lab Practical        | Total              |  |  |
| Instructional nours                 | 4                | 5               | 15                |            | 30                   | 60                 |  |  |
| U                                   |                  | Course C        | Dutline           |            | Maular 15 I          | .7 T.2 D.(         |  |  |
| 1 1 Introduction to data type       | s Simple corre   | lation and re-  | oression analy    | vsis       | Marks 15 L           | :/, 1:3, P:0       |  |  |
| 1.2 Concepts of Probability         | : Random exp     | eriment and     | sample space,     | Probabi    | lity definition and  | basic laws,        |  |  |
| 1.3 Conditional probability a       | and independer   | nce, Random     | variables and     | probabili  | ty distributions.    |                    |  |  |
| Practicals                          | *                |                 |                   | •          | •                    |                    |  |  |
| a. Calculate measures               | of central ten   | dency (mean     | , median, mo      | de) and    | dispersion (varian   | ce, standard       |  |  |
| deviation) for a give               | n dataset.       | D' 'I D         | • • • • •         |            | · , •• ,• •          | 1                  |  |  |
| b. Generate random s                | amples from      | Binomial, Po    | oisson, and N     | ormal di   | istributions using   | a statistical      |  |  |
| software and analyzo                | e the properties | s of these dist | ributions.        |            |                      |                    |  |  |
| Unit 2: Sample Survey               | 1                | 1.              | .1 1              |            | Marks 15 L:          | 8, T:4, P:8        |  |  |
| 2.1 Basics of sample survey         | design, Variou   | s sampling m    | ethods.           | a of hype  | sthesis n Valua in   | torprototion       |  |  |
| 2.3 Tests of significance An        | alvsis of varia  | nce             | lassical testiliş | g of hype  | niesis, p-value in   | iterpretation,     |  |  |
| Practicals                          |                  |                 |                   |            |                      |                    |  |  |
| a. Conduct hypothesis               | tests (e.g., t-1 | test, chi-squa  | re test) using    | a statist  | ical software to a   | nalyze real-       |  |  |
| world datasets.                     |                  |                 |                   |            |                      |                    |  |  |
| Linit 2. Multinomioto Statist       | tion Tookation   |                 |                   |            | Moreleg 15 L         | .0 Т.1 <b>D</b> .0 |  |  |
| <b>Unit 3: Multivariate Statis</b>  | lical Techniqu   | ies             |                   |            | Marks 15 L           | :8, 1:4, P:8       |  |  |
| 3.2 Principal component ana         | lvsis            |                 |                   |            |                      |                    |  |  |
| 3.3 Discriminant analysis an        | d its use in cla | ssification pro | oblems.           |            |                      |                    |  |  |
| Practicals                          |                  |                 |                   |            |                      |                    |  |  |
| <b>a.</b> Apply cluster analys      | is to group sin  | nilar data poir | nts together ba   | used on th | eir characteristics. |                    |  |  |
| b. Use principal compo              | onent analysis ( | (PCA) to redu   | ice the dimens    | sionality  | of a dataset and vis | sualize the        |  |  |
| data in a lower-dime                | sional space.    | ftwares         |                   |            | Morke 15 I           | ·7 T·1 D·8         |  |  |
| 4 1 Knowledge on basic sta          | tistical softwa  | res excel R     | Rstudio Pv        | thon witl  | h NumPy SciPy        | and Pandas         |  |  |
| PSPP, OpenStat.                     |                  |                 | , 10000010, 1 j   |            |                      |                    |  |  |
| Practicals                          |                  |                 |                   |            |                      |                    |  |  |
| a. Use a statistical so             | ftware (like F   | R, Python, or   | Excel) to g       | enerate s  | summary statistics   | and create         |  |  |
| graphical representa                | tions (histogra  | ms, box plots   | ) of the data.    |            |                      |                    |  |  |
| Modes of In-Semester Asse           | ssment:          |                 |                   |            | 40 M                 | arks               |  |  |
| 1. One sessional test -             | 55110110         |                 |                   |            | 10 M                 | arks               |  |  |
| 2. Any one of the follo             | wing activities  | listed below    | -                 |            | 10 Ma                | arks               |  |  |
| a) Assignment                       | C                |                 |                   |            |                      |                    |  |  |
| b) Group discussio                  | n                |                 |                   |            |                      |                    |  |  |
| c) Seminar/Present                  | ation            |                 |                   |            |                      |                    |  |  |
| d) Multiple Choice                  | Questions        |                 |                   |            |                      |                    |  |  |
| 3. Practical In semester            | Examination      |                 |                   |            | 20 N                 | Marks              |  |  |
|                                     |                  |                 |                   |            |                      |                    |  |  |
| Attainment Strategies               |                  |                 |                   |            |                      |                    |  |  |
| Feedback for each LO     Activities |                  |                 |                   |            |                      |                    |  |  |
| • Activities                        |                  |                 |                   |            |                      |                    |  |  |
| Suggested Readings                  |                  |                 |                   |            |                      |                    |  |  |

- 1. Biswas, B. Applied Statistics Process, New Central Book Agency, Kolkata.
- 2. Jain, J.P., & Pravakaran, V.T. Genetics of Population, South Asian Publishers (P) Ltd. New Delhi.
- **3.** Pravakaran, V.T., & Jain, J.P. Statistical techniques for studying genotype-environment interaction, South Asian Publishers (P) Ltd. New Delhi.
- 4. South Asian Publisher (P) Ltd. A Biostatistical and population oriented Approach, New Delhi.
- 5. Ewens, W.J., & Grant, G.R. Statistical methods in Bioinformatics, Springer New York.
- 6. Bang, H., Zhou, X.K., Epps, H.L., & Mazumdar, M. Statistical methods in molecular Biology, Springer, ISBN 978-1-60761-578-1.

| NAME OF THE COURSE | : | FUNDAMENTALS OF BIOINFORMATICS |
|--------------------|---|--------------------------------|
| COURSE TYPE        | : | MAJOR                          |
| TOTAL CREDIT       | : | 4                              |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)     |

**Course Description:** This course offers a comprehensive introduction to the key concepts and essential tools in bioinformatics. Students will delve into various biological databases and bioinformatics applications, with a focus on both sequence and structural data. The course addresses fundamental principles of sequence analysis, such as sequence similarity, identity, and homology. By the end of the course, students will be adept at using bioinformatics tools for sequence analysis, grasp the theoretical foundations of alignment algorithms, and confidently execute both pairwise and multiple sequence alignments.

# Prerequisites

- **Basic Biology:** Understanding of fundamental biological concepts, including DNA, RNA, and protein structure and function.
- Introduction to Computer Science: Familiarity with basic computing concepts, including the use of software applications and basic programming.

Course Objectives: By studying this course, the students will be able to

- Analyze bioinformatics fundamentals, including databases and sequence analysis.
- Demonstrate proficiency in using scoring matrices for sequence alignment.
- Apply advanced techniques for pairwise and multiple sequence alignments.
- Conduct meticulous sequence analysis.
- Cultivate collaboration for interdisciplinary research.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Understand the fundamentals of bioinformatics, including biological databases and sequence analysis.

**LO 1.1:** Demonstrate a comprehensive understanding of the fundamentals of bioinformatics, including the role and importance of biological databases.

LO 1.2: Identify and utilize key bioinformatics tools for analyzing sequence and structure databases.

LO 1.3: Apply basic bioinformatics tools to effectively manage and interpret biological data.

**CO2:** Apply scoring matrices (PAM, BLOSUM) and distinguish between different types of homologues (orthologues, paralogues, xenologues).

**LO 2.1:** Apply scoring matrices (PAM, BLOSUM) to analyze sequence data and differentiate between various types of homologues (orthologues, paralogues, xenologues).

**LO 2.2:** Demonstrate a thorough understanding of sequence similarity, identity, and homology, along with the definitions and distinctions among homologues, orthologues, paralogues, and xenologues.

LO 2.3: Utilize scoring matrices (PAM, BLOSUM) effectively for both nucleic acid and protein sequences, demonstrating proficiency in selecting and applying the appropriate matrix for a given analysis.

**CO3:** Perform pairwise sequence alignments using dynamic programming (Needleman-Wunsch, Smith-Waterman) and interpret results.

**LO 3.1:** Demonstrate the ability to perform pairwise sequence alignments using dynamic programming algorithms, including Needleman-Wunsch and Smith-Waterman, to compare biological sequences effectively.

**LO 3.2:** Interpret alignment results by understanding the concepts of global and local alignment, scoring matrices, gap penalties, and significance scores, and apply this knowledge to evaluate sequence similarities and differences.

LO 3.3: Utilize bioinformatics tools such as EVD, FASTA, and BLAST algorithms to conduct pairwise sequence alignments, demonstrating a practical understanding of sequence analysis techniques.

**CO4:** Apply multiple sequence alignment (MSA) techniques, such as CLUSTALW, to conduct evolutionary analysis.

**LO 4.1:** Demonstrate the ability to apply various MSA methods, including CLUSTALW, PILEUP, and iterative methods, for aligning multiple sequences.

LO 4.2: Evaluate the quality of alignments to make informed decisions in evolutionary analysis.

LO 4.3: Apply advanced MSA techniques, such as profile and block analysis, pattern searching, and algorithms like MEME and Gibbs Sampler, for detailed evolutionary and functional analysis of biological sequences.

**CO5:** Analyze biological data using Hidden Markov Models (HMMs) for gene finding and multiple sequence alignment, demonstrating proficiency in advanced bioinformatics techniques.

**LO 5.1:** Implement the use of HMMs for gene finding, including the development of training sets and prediction of CpG islands.

LO 5.2: Demonstrate proficiency in using HMMs for multiple sequence alignment, including techniques such as frequent words in DNA, consensus word analysis, and transaction and emission matrices.

**LO 5.3:** Gain the ability to analyze biological sequences using HMMs, particularly in the context of gene finding and multiple sequence alignment, to enhance understanding of genomic structures and functions.

**CO6:** Analyze information theory and implement algorithms such as FASTA and BLAST for the purpose of database searching and comparison in bioinformatics.

**LO 6.1:** Use algorithms like FASTA and BLAST effectively to search biological databases, interpret results, and compare sequences.

**LO 6.2:** Demonstrate proficiency in applying information theory concepts and database search algorithms to solve bioinformatics problems and analyze biological data.

## Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO1        | CO2   |         |          |        |
| Procedural Knowledge    |          |            | СОЗ,  | CO5,    |          |        |
|                         |          |            | CO4   | CO6     |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 3   | 3   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | 1    | 2.0     |
| CO2     | 3   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.8     |
| CO3     | 3   | 3   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.7     |
| CO4     | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO5     | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 2   | 1   | 1    | 2.3     |
| CO6     | 2   | 3   | 2   | 2   | 2   | 2   | 3   | 2   | 1   | 1    | 2.0     |
| Average | 2.7 | 2.8 | 1.8 | 1.3 | 2.3 | 1.3 | 2.5 | 2.0 | 1.0 | 1.0  |         |

| Biotechnology                                                                                                                                                                                                                                                                                                                                                                  | and Bioinfor                                                | matics                                                 |                                             |                                                 |                                 | Dibrugari                                     | h University                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------------|--|--|
| Title of the cou                                                                                                                                                                                                                                                                                                                                                               | irse                                                        |                                                        |                                             | FUNDAME                                         | NTALS                           | S OF BIOINFORMATICS                           |                              |  |  |
| Category                                                                                                                                                                                                                                                                                                                                                                       | Major                                                       | Year                                                   | 2                                           | Credits                                         | Δ                               | Course code                                   | BTNC08                       |  |  |
| Category                                                                                                                                                                                                                                                                                                                                                                       | Widjoi                                                      | Semester                                               | IV                                          | Credits                                         | -                               | course code                                   | DINCOO                       |  |  |
| Instructional h                                                                                                                                                                                                                                                                                                                                                                | ours                                                        | Lect                                                   | ure                                         | Tutoria                                         | al                              | Lab Practical                                 | Total                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 3                                                      | )                                           | 15                                              |                                 | 30                                            | 75                           |  |  |
| Unit 1. Diolog                                                                                                                                                                                                                                                                                                                                                                 | ical Databas                                                | 05                                                     | Course                                      | Jutline                                         |                                 | Monka 15 I                                    | .7 T.2 D.6                   |  |  |
| Unit 1: Diolog                                                                                                                                                                                                                                                                                                                                                                 | ical Databas                                                | es                                                     |                                             |                                                 |                                 | Marks 15 L                                    | :/, 1:5, 1:0                 |  |  |
| Fundamentals of Bioinformatics, Biological Databases and Tools: Sequence and Structure Databases, Basic Bioinformatics Tools.                                                                                                                                                                                                                                                  |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| <b>Practical:</b>                                                                                                                                                                                                                                                                                                                                                              | m biological (                                              | database searc                                         | hes and retrie                              | eve informatio                                  | n                               |                                               |                              |  |  |
| Unit 2: Seque                                                                                                                                                                                                                                                                                                                                                                  | nce Analysis                                                | and Alignme                                            | nt                                          |                                                 | <i>/</i> /1 <b>.</b>            | Marks 15 I                                    | ·8 T·4 P·8                   |  |  |
| Unit 2. Seque                                                                                                                                                                                                                                                                                                                                                                  | ICC Analysis                                                | and Anginner                                           | llι                                         |                                                 |                                 |                                               | .0, 1.4, 1.0                 |  |  |
| Sequence Analysis: Basic concepts of sequence similarity, identity and homology, definitions of homologues, orthologues, paralogues and xenologues. Scoring matrices: Basic concept of a scoring matrix, Matrices for nucleic acid and proteins sequences (PAM and BLOSUM), Sequence alignment: Basic concepts of sequence alignment, Uses of Sequence Alignment.<br>Practical |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| a) Build PAM and BLOSUM matrices.                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| Unit 2. Doimui                                                                                                                                                                                                                                                                                                                                                                 |                                                             | A lignmont                                             | JOIS IIKE DLA                               | AST OF FAST.                                    | Α.                              | Maula 15 I                                    | .0 T.1 D.0                   |  |  |
| Unit 5: Fairwi                                                                                                                                                                                                                                                                                                                                                                 | ise sequence                                                | Angiment                                               |                                             |                                                 |                                 | Marks 15 L                                    | .:0, 1:4, 1:0                |  |  |
| Concept of Global and Local Alignment, Dot matrix method, Dynamic programming (Needleman-Wunsch algorithm, Smith-Waterman algorithm, Choosing of best scoring matrix, gap penalties, Significance of score, EVD, FASTA and BLAST algorithms, Information theory and Shanon Entropy.                                                                                            |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| Practical                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| a) Perform                                                                                                                                                                                                                                                                                                                                                                     | m pairwise se                                               | equence alignn                                         | nents using o                               | nline tools or                                  | software                        | e like EMBOSS.                                |                              |  |  |
| b) Interpr                                                                                                                                                                                                                                                                                                                                                                     | et alignment                                                | results to unde                                        | erstand seque                               | ence similarity                                 | and ider                        | ntify conserved rea                           | gions.                       |  |  |
| TT •/ 4 N# 1/•                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 1. /                                                   |                                             |                                                 |                                 | N 1 171                                       | <b>5 T</b> 4 <b>D</b> 0      |  |  |
| Unit 4: Multip                                                                                                                                                                                                                                                                                                                                                                 | ble Sequence                                                | alignment                                              |                                             |                                                 |                                 | Marks 15 L                                    | .:/, <b>1:4</b> , <b>P:8</b> |  |  |
| Multiple Seque<br>Iterative (Gene<br>(Profile and E<br>(MEME) and C                                                                                                                                                                                                                                                                                                            | ence Alignme<br>tic) and Hidd<br>LOCK analy<br>Gibbs Sample | nt methods (M<br>len Markov M<br>ysis, and Patte<br>r. | SA), Scoring<br>odel (HMM)<br>ern searching | g of a MSA, Pr<br>methods of M<br>g, and Expect | ogressiv<br>ISA, Lo<br>tation M | e (CLUSTALW an<br>cal MSA<br>laximization (EM | d PILEUP),<br>) Algorithm    |  |  |
| Practical                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| a) Use to                                                                                                                                                                                                                                                                                                                                                                      | ols like CLUS                                               | STALW or M                                             | USCLE to pe                                 | erform multipl                                  | le sequer                       | nce alignments.                               |                              |  |  |
| b) Compa                                                                                                                                                                                                                                                                                                                                                                       | are and analyz                                              | ze the results t                                       | o understand                                | evolutionary                                    | relations                       | ships and conserve                            | d regions.                   |  |  |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                        |                                             |                                                 |                                 | •                                             | ~                            |  |  |
| Modes of In-S                                                                                                                                                                                                                                                                                                                                                                  | emester Asso                                                | essment:                                               |                                             |                                                 |                                 |                                               | 40 Marks                     |  |  |
| 1. One sessional test -                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                                        |                                             |                                                 |                                 |                                               | 10 Marks                     |  |  |
| 2. Any or                                                                                                                                                                                                                                                                                                                                                                      | ne of the follo                                             | owing activitie                                        | s listed below                              | N -                                             |                                 |                                               | 10 Marks                     |  |  |
| a) Assignment                                                                                                                                                                                                                                                                                                                                                                  |                                                             |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |
| b) Gr                                                                                                                                                                                                                                                                                                                                                                          | oup discussio                                               | on<br>:                                                |                                             |                                                 |                                 |                                               |                              |  |  |
| c) Se                                                                                                                                                                                                                                                                                                                                                                          | minar/Presen                                                | tation                                                 |                                             |                                                 |                                 |                                               |                              |  |  |
| d) Mi                                                                                                                                                                                                                                                                                                                                                                          | ultiple Choice                                              | e Questions                                            |                                             |                                                 |                                 |                                               | 20.34                        |  |  |
| 3. Practic                                                                                                                                                                                                                                                                                                                                                                     | al In semeste                                               | r Examination                                          | l                                           |                                                 |                                 |                                               | 20 Marks                     |  |  |
| Attainment St                                                                                                                                                                                                                                                                                                                                                                  | rategies                                                    |                                                        |                                             |                                                 |                                 |                                               |                              |  |  |

- Feedback for each LO
- Activities

## **Suggested Readings**

- 1. Cynthia Gibas, Per Jambeck. Developing Bioinformatics Computer Skills, O'Reilly
- 2. Dan E. Krane 2003. Fundamental Concepts of Bioinformatics. Pearson Education India
- 3. Stanley. LetovskyBioinformatics: Databases and Systems, Springer
- 4. David W. Mount. Bioinformatics: Sequence and Genome Analysis, Published CSHL Press
- **5.** Des Higgins, Willie R. Taylor. *Bioinformatics*: Sequence, Structure and Databanks: *A Practical Approach*, Oxford University Press.
- **6.** Higgs, P. G. & Attwood, T. K. 2005. Bioinformatics and Molecular Evolution. Blackwell Science. Distributed by Ane Books, New Delhi.
- 7. Stekel, D. 2003. Microarray Bioinformatics. Cambridge University Press. London.
- **8.** Xu, J. & Zhang. 2004. Current Topics in Computational Molecular Biology. MIT Press. Distributed by Ane Books, New Delhi.
- 9. Jones. 2004. Introduction to Bioinformatics Algorithms. Ane Books, India.
- 10. Wang. 2005. Data Mining in Bioinformatics. Ane Books, India.
- 11. Hall. 2004. Phylogenetic Trees Made Easy. W H Freeman & Co. USA.
- **12.** Felsenstein. 2003. Inferring Phylogenies. W H Freeman & Co. USA.

| NAME OF THE COURSE | : | MOLECULAR BIOLOGY          |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MINOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |

**Course Description:** This course provides an in-depth exploration of the molecular mechanisms that underlie the function and regulation of genes and genomes. It covers the fundamental processes of DNA replication, repair, transcription, and translation and the regulation of gene expression in prokaryotic and eukaryotic systems. The course also delves into modern techniques used in molecular biology research and their applications in biotechnology, medicine, and genetics.

# Prerequisites

- Cell Biology
- General Chemistry
- Organic Chemistry
- Biochemistry
- Microbiology

COURSE OBJECTIVES: The objectives of this Course are to -

- Understand the structure and function of nucleic acids.
- Comprehend the molecular mechanisms of DNA replication, transcription, and translation.
- Explore the regulation of gene expression in different organisms.
- Gain practical experience with key molecular biology techniques.
- Appreciate the applications of molecular biology in various fields.

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO1:** Describe the organisation and packaging of genetic material in prokaryotes and eukaryotes.

- LO1.1: Define the key terms and concepts associated with genetic material,
- LO1.2: Illustrate the structure of nucleic acids, chromatin, histones, and nucleosomes
- LO1.3: Explain how genetic material is organized in prokaryotic and eukaryotic cells

CO2: Apply knowledge of nucleases and restriction enzymes to DNA manipulation techniques.

- LO2.1: Recall the functions and types of nucleases and restriction enzymes.
- LO2.2: Understanding: Explain how nucleases and restriction enzymes interact with DNA.
- LO2.3: Use knowledge of nucleases and restriction enzymes in practical DNA manipulation techniques.

CO3: Analyze the differences between prokaryotic and eukaryotic replication mechanisms.

- LO3.1: Explain the basic processes of DNA replication in prokaryotic and eukaryotic cells.
- LO3.2: Apply knowledge of replication mechanisms to identify and differentiate replication components in various cell types.
- LO3.3: Compare and contrast the replication mechanisms in prokaryotic and eukaryotic cells, identifying the major differences and reasons behind these differences

CO4: Apply knowledge of the genetic code and aminoacyl tRNA synthases in translation.

• LO4.1: Recall the components and roles of the genetic code and aminoacyl tRNA synthases in translation.

- LO4.2: Explain how the genetic code directs protein synthesis and how aminoacyl tRNA synthases charge tRNAs with the correct amino acids.
- LO4.3: Understand the genetic code and aminoacyl tRNA synthases to predict the sequence of amino acids from a given mRNA sequence.

CO5: Examine how chromatin structure, histone modifications, and chromatin remodelling complexes influence gene expression.

- LO5.1: Explain the roles of chromatin structure, histone modifications, and chromatin remodelling complexes in regulating gene expression.
- LO5.2: Use knowledge of chromatin dynamics to predict how changes in histone modifications or chromatin remodelling might affect gene expression in a given context.
- LO5.3: Analyze experimental data showing the effects of specific histone modifications or chromatin remodelling on gene expression, identifying patterns and drawing conclusions.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply    | Analyse | Evaluate | Create |
|-------------------------|----------|------------|----------|---------|----------|--------|
| Factual Knowledge       | CO1      |            |          |         |          |        |
| Conceptual Knowledge    |          |            |          | CO3     |          |        |
| Procedural Knowledge    |          |            | CO2, CO4 |         |          |        |
| Metacognitive Knowledge |          |            |          |         | CO5      |        |

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 3   | 2   | 1   | 2   | 2   | 1   | 2   | 2   | 1   | 1    | 1.7     |
| CO2     | 3   | 2   | 2   | 1   | 3   | 2   | 3   | 2   | 1   | 1    | 2.0     |
| CO3     | 3   | 3   | 1   | 2   | 2   | 1   | 2   | 2   | 1   | 1    | 1.8     |
| CO4     | 3   | 2   | 2   | 1   | 2   | 2   | 3   | 2   | 1   | 1    | 1.9     |
| CO5     | 3   | 3   | 2   | 2   | 3   | 2   | 3   | 2   | 1   | 1    | 2.2     |
| Average | 3.0 | 2.4 | 1.6 | 1.6 | 2.4 | 1.6 | 2.6 | 2.0 | 1.0 | 1.0  |         |

| Biotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Biotechnology and Bioinformatics Dibrugarh University                                                                                 |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      |                                                                                         |                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|--|
| Title of the cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rse                                                                                                                                   |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      | MOLECULAR                                                                               | BIOLOGY                                   |  |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MINOR                                                                                                                                 | Year<br>Semester                                                                                                                               | 2<br>IV                                                                                                                            | Credits                                                                                                                          | 4                                                                    | Course code                                                                             | BTNM04                                    |  |
| Instructional ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       | Lect                                                                                                                                           | ure                                                                                                                                | Tutoria                                                                                                                          | al                                                                   | Lab Practical                                                                           | Total                                     |  |
| Instructional no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | burs                                                                                                                                  | 40 05                                                                                                                                          |                                                                                                                                    |                                                                                                                                  |                                                                      | 30                                                                                      | 75                                        |  |
| UNIT 1: GEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETIC MATI                                                                                                                             | ERIAL AND                                                                                                                                      | Course (<br>ITS PACKA                                                                                                              | Dutline<br>AGING                                                                                                                 |                                                                      | Marks: 15, L: 1                                                                         | 0, T: 1, P: 15                            |  |
| <ul> <li>1.1 Nucleic acid as genetic material, Genome organization in prokaryotes and eukaryotes</li> <li>1.2 Chromatin structure and function. Heterochromatin, euchromatin.</li> <li>1.3 Histones and non-histone proteins, general properties of histone, nucleosomes, solenoid structure, packaging of DNA, satellite DNA.</li> <li>1.4 Nucleases and restriction enzymes, Denaturation of DNA and Reassociation, Kinetics. C-value paradox.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      |                                                                                         |                                           |  |
| <ul> <li>Practical <ul> <li>a) Isolation of Genomic DNA from Eukaryotic Cells and Prokaryotic cells</li> <li>b) Quantification and purity assessment of DNA using spectrophotometry</li> <li>c) Digestion of extracted DNA with restriction enzymes</li> <li>d) Analysis of restriction fragments using agarose gel electrophoresis</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      |                                                                                         |                                           |  |
| UNIT 2: REP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LICATION                                                                                                                              |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      | Marks: 15, L: 1                                                                         | 0, T: 2, P: 15                            |  |
| <ul> <li>2.1 DNA replication: mechanism, the replicons, origin, primosome &amp; replisomes.</li> <li>2.2 Properties of prokaryotic and eukaryotic DNA polymerases.</li> <li>2.3 Synthesis of leading and lagging strand. Difference between prokaryotic and eukaryotic replication.</li> <li>Practical <ul> <li>a) Extraction of total RNA from eukaryotic cells.</li> <li>b) Quantification and assessment of RNA.</li> <li>c) Synthesis of cDNA from extracted RNA.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      |                                                                                         |                                           |  |
| UNIT 3: TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NSCRIPTIO                                                                                                                             | N & TRANS                                                                                                                                      | LATION                                                                                                                             |                                                                                                                                  |                                                                      | Marks: 15, L:1                                                                          | 10, T: 1 P: 12                            |  |
| <ul> <li>3.1 Prokaryotic<br/>elongation and</li> <li>3.2 RNA procession</li> <li>3.3 Ribosomession</li> <li>3.4 Direction on<br/>elongation, translation</li> <li>3.5 Post-translation</li> <li>broteins, disulf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c transcriptic<br>termination;<br>ssing and RN<br>structure and<br>f protein sym<br>islocation & t<br>tional modifi-<br>ide bond form | on; promoters<br>Properties of I<br>A editing. Inh<br>function, gen<br>thesis (Dintzis<br>termination an<br>ications- Prote<br>mation. Inhibit | , properties<br>RNA polyme<br>ibitors of tra<br>etic code, and<br>experiment<br>ad the role of<br>colytic cleava<br>ors of transla | of bacterial<br>rase I, II and<br>nscription.<br>ninoacyl tRNA<br>). Formation of<br>respective fac-<br>age, covalent r<br>tion. | RNA po<br>III.<br>A synthas<br>of transla<br>ctors invo<br>modificat | blymerase. Step<br>ses.<br>ation initiation co<br>blved therein.<br>tions, glycosylatio | os: initiation,<br>omplex, chain<br>on of |  |
| UNIT 4: REG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ULATION C                                                                                                                             | <b>)F GENE EX</b>                                                                                                                              | PRESSION                                                                                                                           |                                                                                                                                  |                                                                      | Marks: 1                                                                                | 5, L: 10, T:1,                            |  |
| <ul> <li>P:</li> <li>4.1 Overview of Gene Expression; Constitutive vs. Regulated Genes, Levels of Gene Regulation, Differences between Prokaryotic and Eukaryotic Gene Expression</li> <li>4.2 Regulation of Transcription in Prokaryotes; Operon Model: Structure and Function of Operons; Lac Operon: Inducible System, Trp Operon: Repressible System; Transcription Factors and Sigma Factors:</li> <li>4.3 Regulation of Transcription in Eukaryotes; Chromatin Structure and Remodeling, Role of Histones and Nucleosomes, Histone Modification (Acetylation, Methylation), Chromatin Remodeling Complexes</li> <li>4.4 Transcription Factors and Enhancers; General vs. Specific Transcription Factors;, Enhancers and Silencers, Mediator Complex</li> <li>4.5 Epigenetic Regulation: DNA Methylation, Non-coding RNAs (IncRNAs, miRNAs), X-Chromosome Inactivation and Genomic Imprinting</li> </ul> |                                                                                                                                       |                                                                                                                                                |                                                                                                                                    |                                                                                                                                  |                                                                      |                                                                                         |                                           |  |
| w nere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L: Le                                                                                                                                 | ectures                                                                                                                                        | 1                                                                                                                                  | : Iutorials                                                                                                                      |                                                                      | <u> </u>                                                                                | นตาตสม                                    |  |

| Modes of In-Semester Assessment:<br>1. One sessional test - | 40 Marks<br>10 Marks |
|-------------------------------------------------------------|----------------------|
| 2. Any one of the following activities listed below -       | 10 Marks             |
| a) Assignment                                               |                      |
| b) Group discussion                                         |                      |
| c) Seminar/Presentation                                     |                      |
| d) Multiple Choice Questions                                |                      |
| 3. Practical In semester Examination                        | 20 Marks             |
| Attainment Strategies                                       |                      |
| • Feedback for each LO                                      |                      |
| • Activities                                                |                      |
|                                                             |                      |

# SUGGESTED READINGS:

Г

- 1. Molecular Biology of the Gene, James D. Watson, Pearson/Benjamin Cummings, 2008
- 2. Molecular Biology, Robert Weaver, McGraw-Hill Education, 11-Feb-2011
- 3. Molecular Biology of the Cell. Alberts et al. Garland Science, 18-Nov-2014
- 4. Molecular Cell Biology, Harvey Lodish, W. H. Freeman, 2008
- 5. Essential Molecular Biology: A Practical Approach" by Terry Brown
- 6. Molecular Biology: Principles and Practice" by Michael M. Cox, Jennifer Doudna, and Michael O'Donnell

| NAME OF THE COURSE | : | IMMUNOLOGY                 |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MAJOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |
|                    |   |                            |

**Course Description:** Students will have a concrete knowledge of immunity, its types, cells and organs of the immune system. They will be able to comprehend the structure, functions, and generation of antibody and antibody-mediated immune defence. They will also have insights into cell mediated immune response and antigen presentation through MHC molecules. They will be able to interpret the body's response towards antigens, adverse reactions, immune suppression and their related diseases and disorders. They will be able to understand how innate and adaptive immune systems coordinate to fight invading pathogens. Students will be able to explain the generation, differentiation, activation, and suppression of T and B cells. They will be able to understand the applications of immunological techniques like ELISA, RT-PCR, Flow cytometry, etc., for the detection and quantification of antigens and antibodies. Towards the end of the syllabus, they will be able to interpret the use of immunological molecules in the development of tailored medicines and precision medicines based on immunotherapy.

# Prerequisites

- Introductory Biology
- General Chemistry
- Organic Chemistry
- Biochemistry
- Microbiology
- Human Physiology

COURSE OBJECTIVES: The objectives of this Course are to -

- Conceptualize how the innate and adaptive immune responses coordinate to fight invading pathogens.
- Have an in-depth understanding of different diseases which result from genetic or congenital defects of immune system components
- Develop skills through lab experiments and exercises in specific cell culture assays and imaging techniques for detecting and quantifying immune responses.

Course Outcomes (CO): On completion of this Course, students will be able to -

CO1: Analyze innate and adaptive immunity and their role in disease outcome

- LO 1.1: Understand the key molecules of immune system and their role during infection
- LO 1.2: Describe the interaction between innate and adaptive immune responses in combating infection.
- LO 1.3: Analyze autoimmune disorders and immunodeficiency diseases, their pathogenesis, and clinical manifestations.

CO2: Understand the concept of antigen and antibody and their interaction in disease outcome.

- LO 1.1: Understand the structure, classes, and functions of antibodies
- LO 1.2: Compare the process of T cell and B cell generation, differentiation, and activation.
- LO 1.3: Apply knowledge of gene rearrangement in antibody diversity generation for antibody specificity and diversity.

CO3: Apply the different immunological techniques in detection and quantification of antibodies and antigens.

- LO 3.1: Understand the principle and procedure of different immunological techniques
- LO 3.1: Compare and contrast various immunological assays based on their principle, and applications.

• LO 3.2: Analyse the results of the various assays in detection and quantification of antigen or antibody

**CO4:** Interpret the use of immunological molecules in the development of tailored medicines and precision medicines based on immunotherapy

- LO 1.1: Understand the application of immunological molecules, such as monoclonal antibodies, antibodies and cytokines for designing immunotherapies.
- LO 1.2: Interpret the mechanisms of action of various immunotherapeutic agents and how they interact with immune cells or molecules to enhance or suppress immune function.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       | CO1     |          |        |
| Conceptual Knowledge    |          | CO2        |       |         |          |        |
| Procedural Knowledge    |          |            | CO3   |         |          |        |
| Metacognitive Knowledge |          |            |       |         | CO4      |        |

| CO/PO      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1        | 3   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | 2    |         |
| CO2        | 2   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | 2    |         |
| CO3        | 3   | 2   | 3   | 1   | 3   | 2   | 3   | 2   | 1   | 2    |         |
| <b>CO4</b> | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 2   | 1   | 2    |         |
| Average    | 2.8 | 2.8 | 2.5 | 1.3 | 2.5 | 1.5 | 2.5 | 2.0 | 1.0 | 2.0  |         |

| Biotechnology and Bioinformatics Dibrugarh Universit |       |          |   |          |   |               | h University |
|------------------------------------------------------|-------|----------|---|----------|---|---------------|--------------|
| Title of the cou                                     | ırse  |          |   |          |   | IMMUN         | NOLOGY       |
| Category                                             | Major | Year     | 3 | Credits  | 4 | Course code   | BTNC09       |
|                                                      |       | Semester | V |          |   |               |              |
| Instructional hours                                  |       | Lecture  |   | Tutorial |   | Lab Practical | Total        |
|                                                      |       | 37       |   | 08       |   | 30            | 75           |
| Course Outline                                       |       |          |   |          |   |               |              |

# Unit 1: Fundaments of immunology

Marks: 16, L: 11, T: 2, P: 8

Types of immunity: innate and acquired immunity; active and passive immunity; Herd immunity, humoral and cell-mediated immunity.

Cells and organs involved in immunity; Cell-mediated effector responses, Leucocyte and macrophage migration; inflammation; Diversity in other Immune molecules- Natural Killer cell Receptors and MHC molecules,

Complement system: Activation pathway and its biological consequences; structure and function of MHC I and MHC II molecules,

Hypersensitivity reactions, immune suppression and immune tolerance. Autoimmune disorders, immunodeficiency

# Practical

- a) Preparation of blood smears to identify different types of blood cells under a microscope
- b) Staining and counting of different types of leukocytes using a hemocytometer

# Unit 2:

# Marks: 16, L: 11, T: 2, P:4

Immunoglobulins: Structure, classes and functions; allotypic and idiotypic variations; Catalytic antibodies; T Cell and B Cell generation and differentiation, activation and suppression; Multigene organization of Ig and TCR genes, rearrangement of DNA and generation of Ig and TCR diversity, Ig class switching.

Antigens: Characteristics, antigenicity and immunogenicity; Factors affecting immunogenicity, Role and properties of epitopes, haptens and adjuvants; Processing and presentation of antigens, Immune modulators; B & T cell epitopes; Antigen – Antibody interaction, affinity, cross reactivity, specificity, epitope mapping; Antigen processing pathways, Superantigens; Phage display libraries

# Practical

a) Determination of blood group in human

# Unit 3:

# Marks: 16, L: 8, T: 10, P: 18

Immuological Techniques: Antibody production by hybridoma technology; Antibodies as in vitro and in vivo probes; Immuno assays RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence, Flow cytometry; vaccine technology, Principle of Immunofluorescence Microscopy

# Practicals

- a) Detection of antigen-antibody reaction using dot ELISA
- b) Estimation of antibody using sandwich- ELISA
- c) Radial immunodiffusion to study antigen-antibody interaction
- d) Identification of specific proteins in a sample using Western blotting

# Unit 3:

# Marks: 12, L:7, T:, P: 0

Cell Functional Assays – lymphoproliferation, mixed lymphocyte reaction, Cytokine expression; Cell Imaging Techniques, Transplantation, Clinical manifestations of graft vs host interaction, Tumor immunology, Passive Immunization: Antibody, Transfusion of immuno-competent cells, Stem cell therapy

| Where       | L: Lectures | T: Tutorials              | P: Practical |
|-------------|-------------|---------------------------|--------------|
| <i>mere</i> | L. Leciures | <b>1.</b> <i>1utotuts</i> | 1.1/40/104   |

| Modes<br>1. | of In-Semester Assessment:<br>One sessional test - | 40 Marks<br>10 Marks |
|-------------|----------------------------------------------------|----------------------|
| 2.          | Any one of the following activities listed below - | 10 Marks             |
|             | a) Assignment                                      |                      |
|             | b) Group discussion                                |                      |
|             | c) Seminar/Presentation                            |                      |
|             | d) Multiple Choice Questions                       |                      |
| 3.          | Practical In semester Examination                  | 20 Marks             |
|             |                                                    |                      |
| SUGG        | ESTED READINGS:                                    |                      |

1. Immunology: Kuby et al, W. H. Freeman, 2013

Г

- 2. Essential Immunology: Roitt et al, Wiley-Blackwell, April 2011
- Janeway's Immunology, Kenneth Murphy, Casey Weaver, March 2016
   Cellular and Molecular Immunology: Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai, Elsevier, 2021
- 5. Immunological techniques, Alyaa Farid, 2019
- 6. The Immune System, Peter Parham, 2014

| NAME OF THE COURSE | : | <b>BIOETHICS AND BIOSAFETY</b> |
|--------------------|---|--------------------------------|
| COURSE TYPE        | : | MAJOR                          |
| TOTAL CREDIT       | : | 4                              |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)     |

**Course Description:** This course provides an in-depth exploration of the principles and practices integral to bioethics, biosafety, ethical standards, quality control, and intellectual property rights within the biotechnology field.

## Prerequisites

• Basic Knowledge in Biology and Biotechnology

Course Objectives: By studying this course, the students will be able to

- Assess and apply bioethical principles to biotechnological issues.
- Develop strategies to mitigate biosafety risks.
- Implement WHO and IPR standards to enhance quality control in relevant industries.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Outline the principles of bioethics and explain the biosafety concerns with safeguard measures.

**LO 1.1:** Identify and describe key bioethical principles such as autonomy, beneficence, justice, and equality.

LO 1.2: Explain the major biosafety concerns at various societal levels, including individual, institutional, and global contexts.

LO 1.3: Propose and evaluate effective safeguard measures to mitigate biosafety risks in biotechnological practices.

**CO2:** Compile the BSA statement for the industrial production of pharmaceuticals.

**LO 2.1:** Summarize the British Sociological Association's ethical guidelines for the biotechnological production of pharmaceuticals.

LO 2.2: Evaluate the ethical practices outlined by the BSA in the context of pharmaceutical production.

**LO 2.3:** Apply BSA ethical guidelines to hypothetical scenarios in pharmaceutical production, ensuring compliance and ethical integrity.

CO3: Adapt the WHO quality standards in food process technology.

LO 3.1: Describe the WHO quality standards relevant to food process technology.

LO 3.2: Assess the implementation of WHO quality control measures in food processing.

**LO 3.3:** Develop detailed plans to adapt and implement WHO quality standards in a specific food processing context.

CO4: Discuss on the global scenario of patenting.

LO 4.1: Analyze current trends and challenges in the global patenting landscape.

LO 4.2: Compare patenting systems and practices across different countries and regions.

**LO 4.3:** Evaluate India's position and strategies within the global patenting framework.

**CO5:** Comprehend the forms of patents, patentability and process of patenting.

LO 5.1: Identify and explain the various forms of patents and their specific criteria.

LO 5.2: Understand the criteria for patentability, including novelty, non-obviousness, and utility.

**LO 5.3:** Outline the steps involved in the patenting process, from application to approval, both in India and internationally.
| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO1        |       |         |          |        |
| Procedural Knowledge    |          |            | CO2,  |         | CO4      | CO3    |
|                         |          |            | CO5   |         | 004      |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

# Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 1   | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO2     | 3   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO3     | 1   | 1   | 1   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.3     |
| CO4     | 1   | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| CO5     | 1   | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1.3     |
| Average | 1.4 | 2.2 | 1.0 | 1.8 | 1.4 | 1.0 | 1.2 | 1.0 | 1.0 | 1.0  |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ини Бютуот                                | natics           |              |                   |            | Biotechnology and Bioinformatics Dibrugarh University |                |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|--------------|-------------------|------------|-------------------------------------------------------|----------------|--|--|--|--|--|--|--|--|
| Title of the cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rse                                       |                  |              | BIO               | ETHICS     | AND BIOSAFE                                           | ЕТҮ            |  |  |  |  |  |  |  |  |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major                                     | Year<br>Semester | 3<br>V       | Credits           | 4          | Course code                                           | BTNC10         |  |  |  |  |  |  |  |  |
| Instructional ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NITE                                      | Lect             | ure          | Tutor             | ial        | Lab Practical                                         | Total          |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jul 5                                     | 4                | 5            | 15                |            | -                                                     | 60             |  |  |  |  |  |  |  |  |
| TT 4 4 D 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 601 (1                                  | •                | Cours        | e Outline         |            |                                                       |                |  |  |  |  |  |  |  |  |
| Unit 1: Principles of Bioethics       Marks 12 L:9, T:3         1.1 Definition- Bioethics, Legality, morality and ethics- An introduction       Marks 12 L:9, T:3         1.2 Intoduction to the principles of Bioethics       1.3 Principles of autonomy, Human rights         1.4 Beneficence and privacy justice equality.       Marks 12 L:9, T:3                                                                                                                            |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| Unit 2: Biosafe                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ety concerns                              |                  |              |                   |            | Marl                                                  | ks 12 L:9, T:4 |  |  |  |  |  |  |  |  |
| 2.1 Introduction to Biosafety, Concept and issues of Biosafety<br>2.2 Rational Vs subjective perceptions of risks and benefits<br>2.3 Relationship between risk hazard, exposure, and safe guard<br>2.4 Biosafety concerns at the level of individuals, institutions, society, region, country and the world<br>2.5 Lab associated infections.                                                                                                                                   |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| Unit 3: Statem                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ent of Ethica                             | l practice       |              |                   |            | Mark                                                  | s 12 L:9, T:4  |  |  |  |  |  |  |  |  |
| <ul> <li>3.1 Introduction to BSA, History of BSA, British Sociological Association (BSA) statement of ethical practices of biotechnology in the production of pharmaceutical products</li> <li>3.2 BSA statement ethical practices of biotechnology in the production of drugs</li> <li>3.3 BSA statement ethical practices of biotechnology in the production vaccines</li> <li>3.4 BSA statement ethical practices of biotechnology in the production biomolecules.</li> </ul> |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| Unit 4: WHO quality standardsMarks 12 L:9, T:4                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| 4.1 Introduction to WHO and its functions, WHO standards – Quality control                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| 4.2 Quality con                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trol in dairy r                           | rocess technol   | ogy<br>logy  |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| 4.4 Quality con                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trol for potab                            | le water         | logy         |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| 4.5 Quality con                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trol measures                             | in pharmaceu     | tical indus  | tries.            |            |                                                       |                |  |  |  |  |  |  |  |  |
| Unit 5: IPR an                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Patenting                               |                  |              |                   |            | Marl                                                  | ks 12 L:9, T:4 |  |  |  |  |  |  |  |  |
| 5.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n to IPR and H                            | Patenting        | dia WTC      | Act Conventio     | n on Dio   | liversity (CPD)                                       |                |  |  |  |  |  |  |  |  |
| 5 3 Patent Co-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peration Trea                             | tv (PCT) For     | ns of pate   | nts and patentab  | ility proc | ess of Patenting                                      |                |  |  |  |  |  |  |  |  |
| 5.4 Indian and                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | international a                           | agencies involv  | ved in IPR   | & patenting       | inty, proc | ess of 1 atoming                                      |                |  |  |  |  |  |  |  |  |
| 5.5 Global scer                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ario of patent                            | s and India's p  | oosition, pa | atenting of biolo | gical mat  | erial, GLP, GMP                                       |                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| Modes of In-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emester Asse                              | ssment:          |              |                   |            | 40                                                    | Marks          |  |  |  |  |  |  |  |  |
| 1. One set                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssional test -                            |                  |              |                   |            | 20                                                    | Marks          |  |  |  |  |  |  |  |  |
| 2. Any or                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e of the follow                           | wing activities  | listed belo  | ow -              |            | 20                                                    | Marks          |  |  |  |  |  |  |  |  |
| a) As                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | signment                                  |                  |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| b) Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oup discussion                            | n                |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| c) Sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ninar/Presenta                            | ation            |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| d) Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iltiple Choice                            | Questions        |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |
| Attainment St<br>• Feedba<br>• Activit<br>Suggested Rea                                                                                                                                                                                                                                                                                                                                                                                                                          | rategies<br>ck for each L<br>ies<br>dings | 0                |              |                   |            |                                                       |                |  |  |  |  |  |  |  |  |

- **1.** Beauchamp, T.L., & Childress, J.F. (2019). Principles of Biomedical Ethics, 8th Edition. Oxford University Press.
- 2. Resnik, D.B. (2012). Environmental Health Ethics. Cambridge University Press.
- **3.** Murray, T.H., & Mehlman, M.J. (2000). Encyclopedia of Ethical, Legal, and Policy Issues in Biotechnology. John Wiley & Sons.
- **4.** Parker, L.S., & Ackerly, D.C. (2020). Ethical Challenges in the Biotechnology Industry. Academic Press.
- 5. WHO. (2011). Quality Practices in Basic Biomedical Research. World Health Organization.
- 6. Bentley, J. (2009). Intellectual Property Rights: A Critical History. Edward Elgar Publishing.

| NAME OF THE COURSE | : | MOLECULAR EVOLUTION AND PHYLOGENY |
|--------------------|---|-----------------------------------|
| COURSE TYPE        | : | MAJOR                             |
| TOTAL CREDIT       | : | 4                                 |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)        |

**Course Description:** This course explores the principles of evolutionary genetics and phylogenetic analysis. Students will learn about the mechanisms of evolution, natural selection, and genetic variation within populations. The course covers models of molecular evolution, genome dynamics, and methods for constructing and interpreting phylogenetic trees. Practical components include simulations of genetic equilibrium, analysis of codon usage patterns, and constructing phylogenetic trees using various algorithms. This course emphasizes both theoretical understanding and practical skills in evolutionary analysis and phylogenetics.

#### Prerequisites

- **Bioinformatics (recommended):** Familiarity with bioinformatics tools and databases for sequence analysis and phylogenetic studies.
- **Statistics:** Basic knowledge of statistical methods and data analysis to comprehend genetic variation and population genetics.

Course Objectives: By studying this course, the students will be able to

- Understand evolution, natural selection, and genetic variation.
- Analyze genetic variation using models like Hardy-Weinberg equilibrium.
- Conduct sequence analysis and construct phylogenetic trees.
- Develop practical skills in interpreting phylogenetic data.
- Approach scientific inquiry with curiosity and critical thinking.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Understand the Fundamental Principles of Evolution and Molecular Archeology.

**LO 1.1:** Explain the concepts of evolution, natural selection, phylogeny, convergent evolution, and co-evolution.

LO 1.2: Describe the Hardy-Weinberg equilibrium and its implications for genetic variation in populations.

**LO 1.3:** Identify measures of genetic diversity and discuss the neutral and nearly-neutral theories of molecular evolution.

**CO2:** Analyze the Mechanisms of Genetic Variation and Molecular Evolution.

**LO 2.1:** Analyze the effects of mutation, migration, selection, and genetic drift on gene frequencies within populations.

LO 2.2: Compare different theories of molecular evolution, focusing on neutral and nearly-neutral theories.

LO 2.3: Conduct simulations to observe the Hardy-Weinberg equilibrium in populations.

**CO3:** Evaluate Models of Molecular Evolution and Genome Dynamics.

**LO 3.1:** Evaluate models of molecular evolution considering functional constraints and substitution patterns.

**LO 3.2:** Discuss the mechanisms of genome evolution, including gene families, lateral gene transfer, and chromosomal evolution.

LO 3.3: Analyze gene duplication events and their role in evolutionary processes.

**CO4:** Conduct Phylogenetic Analysis Using Sequence Data.

LO 4.1: Calculate evolutionary distances among sequences using pairwise comparison methods.

LO 4.2: Test the molecular clock hypothesis through practical applications.

LO 4.3: Perform sequence analysis to study natural selection and evolutionary clocks.

**CO5:** Design and Construct Phylogenetic Trees to Illustrate Evolutionary Relationships.

LO 5.1: Design phylogenetic trees using distance-based methods such as UPGMA and Neighbor-Joining.

LO 5.2: Construct phylogenetic trees to represent evolutionary relationships and clades.

**LO 5.3:** Develop strategies to assess the reliability of phylogenetic trees using bootstrap and randomization tests.

CO6: Develop Practical Skills in Evolutionary and Phylogenetic Analysis.

**LO 6.1:** Conduct practical simulations of Hardy-Weinberg equilibrium to understand genetic variation.

LO 6.2: Analyze codon usage patterns and base composition through practical exercises.

**LO 6.3:** Construct and evaluate phylogenetic trees using practical tools and methods such as UPGMA and Neighbor-Joining.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          | CO1        |       |         |          |        |
| Conceptual Knowledge    |          |            |       | CO2     |          |        |
| Procedural Knowledge    |          |            | CO4   | CO6     | CO3      | CO5    |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |         |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
|         |     |     |     |     |     |     |     |     |     |      | Average |
| CO1     | 2   | 3   | 2   | 1   | 2   | 1   | 1   | 2   | 1   | 1    | 1.6     |
| CO2     | 2   | 3   | 1   | 1   | 2   | 1   | 1   | 2   | 1   | 1    | 1.5     |
| CO3     | 2   | 3   | 2   | 1   | 2   | 2   | 1   | 2   | 1   | 1    | 1.7     |
| CO4     | 2   | 3   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.6     |
| CO5     | 2   | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 2    | 2.1     |
| CO6     | 2   | 3   | 1   | 1   | 2   | 2   | 2   | 2   | 1   | 1    | 1.7     |
| Average | 2.0 | 2.8 | 1.7 | 1.2 | 2.0 | 1.5 | 1.5 | 2.0 | 1.7 | 1.7  |         |

| Biotechnology and Bioinformatics Dibrugarh University                                                                                                                                           |                                                                   |                                                                    |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------------------------------------------|----------------------------------------|--|--|--|
| Title of the cou                                                                                                                                                                                | urse                                                              |                                                                    | Μ                                              | OLECULAR                                          | EVOL                                | UTION AND PH                                                 | YLOGENY                                |  |  |  |
| Category                                                                                                                                                                                        | Major                                                             | Year<br>Semester                                                   | 3<br>V                                         | Credits                                           | 4                                   | Course code                                                  | BTNC11                                 |  |  |  |
| In stars at is a slib                                                                                                                                                                           |                                                                   | Lect                                                               | ture                                           | Tutori                                            | al                                  | Lab Practical                                                | Total                                  |  |  |  |
| Instructional n                                                                                                                                                                                 | ours                                                              | 3                                                                  | 0                                              | 15                                                |                                     | 30                                                           | 75                                     |  |  |  |
|                                                                                                                                                                                                 |                                                                   |                                                                    | Course (                                       | Outline                                           |                                     |                                                              |                                        |  |  |  |
| Unit 1: Molec                                                                                                                                                                                   | <b>ular Archeol</b>                                               | <b>ogy</b><br>atural selectio                                      | on nhvlogen                                    | iv convergent                                     | evolutio                            | Marks 15 I                                                   | L:7, T:3, P:4                          |  |  |  |
| genes in populations. Hardy-Weinberg equilibrium. Mutation; Migration; Selection; Genetic drift; measures of genetic diversity. The neutral and nearly-neutral theories of molecular evolution. |                                                                   |                                                                    |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
| <b>Practical</b><br>a) Simula                                                                                                                                                                   | Practical<br>a) Simulation of Hardy-Weinberg Equilibrium.         |                                                                    |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
| Unit 2: Evolu                                                                                                                                                                                   | tionary Anal                                                      | ysis                                                               |                                                |                                                   |                                     | Marks 15 I                                                   | L:7, T:4, P:8                          |  |  |  |
| Models of Mo<br>and base comp                                                                                                                                                                   | lecular evolut                                                    | tion, Functiona                                                    | al constraints                                 | s and the rate                                    | of substi                           | tution patterns of                                           | codon usage                            |  |  |  |
| Evolution of g<br>Genome dupl<br>concerted evol                                                                                                                                                 | enome and g<br>ications. Orthution and mo                         | ene families: l<br>nology and pa<br>lecular drive.                 | Lateral gene<br>aralogy. Gei                   | transfer and t<br>ne duplication                  | ransposi<br>1 and d                 | tion. Chromosoma<br>ivergence. Domai                         | al evolution:<br>n shuffling,          |  |  |  |
| Practical                                                                                                                                                                                       | air of Codon 1                                                    | Las as Dattant                                                     |                                                | · · · · · · · · · · · · · · · · · · ·             |                                     |                                                              |                                        |  |  |  |
| a) Analysis of Codon Usage Patterns and Base Composition                                                                                                                                        |                                                                   |                                                                    |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
| Unit 3. Phylor                                                                                                                                                                                  | puplication al                                                    | nd Divergence                                                      | Analysis                                       |                                                   |                                     | Marks 15 I                                                   | ·8 T·4 P·8                             |  |  |  |
| Sequence Ana<br>correlation and<br><b>Practical</b><br>• Estima<br>• Testin                                                                                                                     | lysis, natural<br>l models. Mo<br>ating Evolutic<br>g the Molecul | selection and<br>lecular clocks.<br>onary Distance<br>ar Clock Hyp | l clocks: Ca<br>s Using Pair<br>othesis.       | llculating evol                                   | lutionary<br>e Compa                | v distances among                                            | g sequences;                           |  |  |  |
| Unit 4. Phylo                                                                                                                                                                                   | genv Algoriti                                                     | hms                                                                |                                                |                                                   |                                     | Marks 15 L.                                                  | 8 T·4 P·10                             |  |  |  |
|                                                                                                                                                                                                 | geny Aigoria                                                      |                                                                    |                                                |                                                   |                                     |                                                              | 0, 1.4, 1.10                           |  |  |  |
| Concepts: Kin<br>and distance b<br>Neighbor-Join<br><b>Practical</b>                                                                                                                            | ds of trees, repared phylogo<br>ing, Maximum                      | ooting, clades,<br>enetic method<br>n Parsimony,                   | , reconstruct<br>s. Phylogen<br>Reliability of | ing character<br>etic analysis<br>f trees: Bootst | evolution<br>algorithm<br>rap, Jack | n, consensus trees<br>ns: Distance-base<br>knife, randomizat | . Parsimony<br>d: UPGMA,<br>ion tests. |  |  |  |
| a) Constr                                                                                                                                                                                       | ructing a Phyl                                                    | ogenetic Tree                                                      | Using UPGI                                     | MA.                                               |                                     |                                                              |                                        |  |  |  |
| b) Constr                                                                                                                                                                                       | ructing a Phyl                                                    | ogenetic Tree                                                      | Using Neigh                                    | nbor-Joining.                                     |                                     |                                                              |                                        |  |  |  |
| c) Assess                                                                                                                                                                                       | sing the Relia                                                    | bility of Phylo                                                    | genetic Tree                                   | s Using Boots                                     | strap Ana                           | alysis                                                       |                                        |  |  |  |
| Where                                                                                                                                                                                           | L:                                                                | Lectures                                                           |                                                | T: Tutor                                          | ials                                | <i>P: F</i>                                                  | Practical                              |  |  |  |
| Modes of In-S                                                                                                                                                                                   | Semester Asso                                                     | essment:                                                           |                                                |                                                   |                                     |                                                              | 40 Marks                               |  |  |  |
| $\begin{array}{c} 1.  \text{One so} \\ 2  \text{Answer} \end{array}$                                                                                                                            | tosional test -                                                   | wing optiviti-                                                     | a listed hal-                                  | ** /                                              |                                     |                                                              | 10 Marks                               |  |  |  |
| $\angle$ Any o                                                                                                                                                                                  | ne of the follo                                                   | owing activitie                                                    | s listed belo                                  | w -                                               |                                     |                                                              | IU MARKS                               |  |  |  |
| a) As                                                                                                                                                                                           | soun discussio                                                    | n n                                                                |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
|                                                                                                                                                                                                 | oup discussion                                                    | tation                                                             |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
|                                                                                                                                                                                                 | ultiple Choice                                                    | Questions                                                          |                                                |                                                   |                                     |                                                              |                                        |  |  |  |
| 3. Practic                                                                                                                                                                                      | cal In semeste                                                    | r Examination                                                      | 1                                              |                                                   |                                     |                                                              | 20 Marks                               |  |  |  |
|                                                                                                                                                                                                 |                                                                   |                                                                    |                                                |                                                   |                                     |                                                              |                                        |  |  |  |

#### **Attainment Strategies**

- Feedback for each LO
- Activities

## SUGGESTED READINGS:

- 1. Futuyma, D.J. 2017. Evolution, Sinauer Associates.
- 2. Hillis, D.M., Moritz, C., and Mable, B.K. 2019. Molecular Systematics, Sinauer Associates.
- 3. Yang, Z. 2014. Molecular Evolution: A Statistical Approach, Oxford University Press.
- 4. Felsenstein, J. 2003. Inferring Phylogenies, Sinauer Associates.
- 5. Pagel, M. 2012. Evolutionary Analysis, Oxford University Press.
- 6. Nei, M., and Kumar, S. 2000. Molecular Evolution and Phylogenetics, Oxford University Press.
- 7. Garland, T., and Rose, M.R. 2009. Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments, University of California Press.
- 8. Swofford, D.L. et al. 2003. Phylogenetic Analysis Using Parsimony (and other methods), Sinauer Associates.
- **9.** Yang, Z., and Rannala, B. 2012. Molecular Phylogenetics: Principles and Practice, Oxford University Press.
- **10.** Hill, W.G., and Robertson, A. 1966. The Effect of Linkage on Limits to Artificial Selection, Genetical Research.

| NAME OF THE COURSE | : | FUNDAMENTALS OF BIOINFORMATICS |
|--------------------|---|--------------------------------|
| COURSE TYPE        | : | MINOR                          |
| TOTAL CREDIT       | : | 4                              |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)     |

**Course Description:** This course offers a comprehensive introduction to the key concepts and essential tools in bioinformatics. Students will delve into various biological databases and bioinformatics applications, with a focus on both sequence and structural data. The course addresses fundamental principles of sequence analysis, such as sequence similarity, identity, and homology. By the end of the course, students will be adept at using bioinformatics tools for sequence analysis, grasp the theoretical foundations of alignment algorithms, and confidently execute both pairwise and multiple sequence alignments.

#### Prerequisites

- **Basic Biology:** Understanding of fundamental biological concepts, including DNA, RNA, and protein structure and function.
- Introduction to Computer Science: Familiarity with basic computing concepts, including the use of software applications and basic programming.

Course Objectives: By studying this course, the students will be able to

- Analyze bioinformatics fundamentals, including databases and sequence analysis.
- Demonstrate proficiency in using scoring matrices for sequence alignment.
- Apply advanced techniques for pairwise and multiple sequence alignments.
- Conduct meticulous sequence analysis.
- Cultivate collaboration for interdisciplinary research.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Understand the fundamentals of bioinformatics, including biological databases and sequence analysis.

**LO 1.1:** Demonstrate a comprehensive understanding of the fundamentals of bioinformatics, including the role and importance of biological databases.

LO 1.2: Identify and utilize key bioinformatics tools for analyzing sequence and structure databases.

LO 1.3: Apply basic bioinformatics tools to effectively manage and interpret biological data.

**CO2:** Apply scoring matrices (PAM, BLOSUM) and distinguish between different types of homologues (orthologues, paralogues, xenologues).

**LO 2.1:** Apply scoring matrices (PAM, BLOSUM) to analyze sequence data and differentiate between various types of homologues (orthologues, paralogues, xenologues).

**LO 2.2:** Demonstrate a thorough understanding of sequence similarity, identity, and homology, along with the definitions and distinctions among homologues, orthologues, paralogues, and xenologues.

LO 2.3: Utilize scoring matrices (PAM, BLOSUM) effectively for both nucleic acid and protein sequences, demonstrating proficiency in selecting and applying the appropriate matrix for a given analysis.

**CO3:** Perform pairwise sequence alignments using dynamic programming (Needleman-Wunsch, Smith-Waterman) and interpret results.

**LO 3.1:** Demonstrate the ability to perform pairwise sequence alignments using dynamic programming algorithms, including Needleman-Wunsch and Smith-Waterman, to compare biological sequences effectively.

**LO 3.2:** Interpret alignment results by understanding the concepts of global and local alignment, scoring matrices, gap penalties, and significance scores, and apply this knowledge to evaluate sequence similarities and differences.

LO 3.3: Utilize bioinformatics tools such as EVD, FASTA, and BLAST algorithms to conduct pairwise sequence alignments, demonstrating a practical understanding of sequence analysis techniques.

**CO4:** Apply multiple sequence alignment (MSA) techniques, such as CLUSTALW, to conduct evolutionary analysis.

**LO 4.1:** Demonstrate the ability to apply various MSA methods, including CLUSTALW, PILEUP, and iterative methods, for aligning multiple sequences.

LO 4.2: Evaluate the quality of alignments to make informed decisions in evolutionary analysis.

**LO 4.3:** Apply advanced MSA techniques, such as profile and block analysis, pattern searching, and algorithms like MEME and Gibbs Sampler, for detailed evolutionary and functional analysis of biological sequences.

**CO5:** Analyze biological data using Hidden Markov Models (HMMs) for gene finding and multiple sequence alignment, demonstrating proficiency in advanced bioinformatics techniques.

**LO 5.1:** Implement the use of HMMs for gene finding, including the development of training sets and prediction of CpG islands.

LO 5.2: Demonstrate proficiency in using HMMs for multiple sequence alignment, including techniques such as frequent words in DNA, consensus word analysis, and transaction and emission matrices.

**LO 5.3:** Gain the ability to analyze biological sequences using HMMs, particularly in the context of gene finding and multiple sequence alignment, to enhance understanding of genomic structures and functions.

**CO6:** Analyze information theory and implement algorithms such as FASTA and BLAST for the purpose of database searching and comparison in bioinformatics.

**LO 6.1:** Use algorithms like FASTA and BLAST effectively to search biological databases, interpret results, and compare sequences.

**LO 6.2:** Demonstrate proficiency in applying information theory concepts and database search algorithms to solve bioinformatics problems and analyze biological data.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO1        | CO2   |         |          |        |
| Procedural Knowledge    |          |            | СОЗ,  | CO5,    |          |        |
|                         |          |            | CO4   | CO6     |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### **Mapping of Course Outcomes to Program Outcomes**

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 3   | 3   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | 1    | 2.0     |
| CO2     | 3   | 3   | 2   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.8     |
| CO3     | 3   | 3   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.7     |
| CO4     | 2   | 2   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 1    | 1.5     |
| CO5     | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 2   | 1   | 1    | 2.3     |
| CO6     | 2   | 3   | 2   | 2   | 2   | 2   | 3   | 2   | 1   | 1    | 2.0     |
| Average | 2.7 | 2.8 | 1.8 | 1.3 | 2.3 | 1.3 | 2.5 | 2.0 | 1.0 | 1.0  |         |

| Biotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Bioinfor                                                                | matics                                      |                |                |           | Dibrugari          | h University                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|----------------|----------------|-----------|--------------------|----------------------------------|--|
| Title of the cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | irse                                                                        |                                             |                | FUNDAME        | ENTALS    | OF BIOINFOR        | MATICS                           |  |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minor                                                                       | Year<br>Semester                            | 3<br>V         | Credits        | 4         | Course code        | BTNM05                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | Lect                                        | ure            | Tutori         | al        | Lab Practical      | Total                            |  |
| Instructional h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ours                                                                        | 3                                           | )              | 15             |           | 30                 | 75                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                             | Course (       | Dutline        |           |                    |                                  |  |
| Unit 1: Biolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ical Databas                                                                | es                                          |                |                |           | Marks 15 L         | .:7, T:3, P:6                    |  |
| Fundamentals of Bioinformatics, Biological Databases and Tools: Sequence and Structure Databases, Basic Bioinformatics Tools.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                             |                |                |           |                    |                                  |  |
| <b>Practical:</b><br>a) Perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m biological                                                                | database searc                              | hes and retrie | eve informatio | on.       |                    |                                  |  |
| Unit 2: Seque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nce Analysis                                                                | and Alignme                                 | nt             |                |           | Marks 15 I         | .:8. T:4. P:8                    |  |
| <ul> <li>Sequence Analysis: Basic concepts of sequence similarity, identity and homology, definitions of homologues, orthologues, paralogues and xenologues. Scoring matrices: Basic concept of a scoring matrix, Matrices for nucleic acid and proteins sequences (PAM and BLOSUM), Sequence alignment: Basic concepts of sequence alignment, Uses of Sequence Alignment.</li> <li>Practical <ul> <li>a) Build PAM and BLOSUM matrices.</li> </ul> </li> </ul>                                                                               |                                                                             |                                             |                |                |           |                    |                                  |  |
| Unit 3. Pairwi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ise Sequence                                                                | Alignment                                   |                |                |           | Marks 15 I         | ·8 T·4 P·8                       |  |
| <ul> <li>Concept of Global and Local Alignment, Dot matrix method, Dynamic programming (Needleman-Wunsch algorithm, Smith-Waterman algorithm, Choosing of best scoring matrix, gap penalties, Significance of score, EVD, FASTA and BLAST algorithms, Information theory and Shanon Entropy.</li> <li>Practical <ul> <li>a) Perform pairwise sequence alignments using online tools or software like EMBOSS.</li> <li>b) Interpret alignment results to understand sequence similarity and identify conserved regions.</li> </ul> </li> </ul> |                                                                             |                                             |                |                |           |                    |                                  |  |
| Unit 4: Multip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le Sequence                                                                 | alignment                                   |                |                |           | Marks 15 I         |                                  |  |
| Unit 4: Multiple Sequence alignmentMarks 15 L:7, T:4, P:8Multiple Sequence Alignment methods (MSA), Scoring of a MSA, Progressive (CLUSTALW and PILEUP),Iterative (Genetic) and Hidden Markov Model (HMM) methods of MSA, Local MSA(Profile and BLOCK analysis, and Pattern searching, and Expectation Maximization (EM) Algorithm(MEME) and Gibbs Sampler.                                                                                                                                                                                   |                                                                             |                                             |                |                |           |                    |                                  |  |
| Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |                                             |                |                |           |                    |                                  |  |
| a) Use to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ols like CLU                                                                | STALW or M                                  | USCLE to pe    | erform multip  | le sequer | nce alignments.    |                                  |  |
| b) Compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are and analyz                                                              | ze the results t                            | o understand   | evolutionary   | relations | ships and conserve | ed regions.                      |  |
| Modes of In-S<br>1. One se<br>2. Any or<br>a) As<br>b) Gr<br>c) Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emester Assessional test -<br>ne of the follo<br>signment<br>oup discussion | essment:<br>owing activitie<br>on<br>tation | s listed below | W -            |           |                    | 40 Marks<br>10 Marks<br>10 Marks |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ultiple Choice                                                              | e Ouestions                                 |                |                |           |                    |                                  |  |
| 3. Practic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al In semeste                                                               | er Examination                              | l              |                |           |                    | 20 Marks                         |  |
| Attainment St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rategies                                                                    |                                             |                |                |           |                    |                                  |  |

- Feedback for each LO
- Activities

## **Suggested Readings**

- 1. Cynthia Gibas, Per Jambeck. Developing Bioinformatics Computer Skills, O'Reilly
- 2. Dan E. Krane 2003. Fundamental Concepts of Bioinformatics. Pearson Education India
- 3. Stanley. LetovskyBioinformatics: Databases and Systems, Springer
- 4. David W. Mount. Bioinformatics: Sequence and Genome Analysis, Published CSHL Press
- **5.** Des Higgins, Willie R. Taylor. *Bioinformatics*: Sequence, Structure and Databanks: *A Practical Approach*, Oxford University Press.
- **6.** Higgs, P. G. & Attwood, T. K. 2005. Bioinformatics and Molecular Evolution. Blackwell Science. Distributed by Ane Books, New Delhi.
- 7. Stekel, D. 2003. Microarray Bioinformatics. Cambridge University Press. London.
- **8.** Xu, J. & Zhang. 2004. Current Topics in Computational Molecular Biology. MIT Press. Distributed by Ane Books, New Delhi.
- 9. Jones. 2004. Introduction to Bioinformatics Algorithms. Ane Books, India.
- 10. Wang. 2005. Data Mining in Bioinformatics. Ane Books, India.
- 11. Hall. 2004. Phylogenetic Trees Made Easy. W H Freeman & Co. USA.
- **12.** Felsenstein. 2003. Inferring Phylogenies. W H Freeman & Co. USA.

| NAME OF THE COURSE | : | HUMAN DISEASE AND DISORDER |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MAJOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |

**Course description:** This course will provide a comprehensive knowledge of diseases, their mode of transmission, and prevention strategies. Students will be able to describe the transmission cycle of diseases and the roles of agents, hosts, vectors, and their interactions in the outcome of a disease. The course will provide a description of the various communicable diseases such as cholera, HIV/AIDS, and malaria, and non-communicable diseases including cardiovascular diseases, diabetes, cancer etc. The students will be able to analyze the critical genetic factors that play a crucial role in development of prenatal and neonatal diseases.

#### **Prerequisites:**

- Basic knowledge of Host and pathogen
- Health and hygiene
- Disease transmission

Course Objectives: The objectives of this Course are to -

- 1. Decipher knowledge for ecology and natural of a disease
- 2. Decipher origin of disease in a population with a known etiology
- 3. Understand the causation of a disease with specific purpose for formulation and selection/rejection of hypothesis, survey.
- 4. Understand the components of Nutrition and Health.
- 5. Understand the management of biomedical waste

COURSE OUTCOME (CO): On completion of this Course, students will be able to -

**CO1**: Understand the concepts of hosts, vectors and pathogen in the transmission cycle of disease, including role of environment in disease outcome.

LO 1.1: Understand the concept of host, vector and pathogen in disease implications

LO 1.2: Demonstrate the factors that contribute to the origin and transmission of infectious diseases.

LO 1.2: Analyze the virulence of a pathogen and its implications in severity of a disease.

CO2: Identify the etiological factors, signs and symptoms, control and prevention of communicable diseases LO2.1: Explain the role of vectors in disease transmission

**LO2.2**: Identify the mechanisms of transmission of various communicable diseases, including contact-dependent, airborne, vector-borne transmission, etc.

**LO2.3**: Apply the cumulative knowledge of mode of transmission and signs and symptoms of an infection in identifying the cause of diseases and appropriate measures to be taken for treatment and prevention. **CO3**: Apply and the risk factors and etiological factors, associated with non-communicable diseases

**LO3.1:** Explain the complex role of genes, environment, and lifestyle factors in outcome of noncommunicable diseases.

**LO3.2**: Identify the risk factors of communicable diseases and their implications in disease outcome **LO3.3**: Apply the impact of risk factors in disease severity

**CO4:** Analyze the critical factors associated with etiological factors of Prenatal disease/ Neonatal Disease.

**LO4.1**: Demonstrate the genetic factors responsible for the causation of prenatal and neonatal diseases

LO4.2: Identify the risk factors associated with maternal health on the outcome of prenatal and neonatal diseases

**LO4.3**: Analyze the critical factors associated with prenatal and neonatal disease outcomes and strategies for prevention

| Cognitive | Man   | of Course | Outcomes | with 1  | Bloom's   | Taxonomy |
|-----------|-------|-----------|----------|---------|-----------|----------|
| Cognitive | map c |           | Outcomes | WILLI I | DIODIII 3 | талопошу |

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
|                         |          |            |       |         |          |        |
| Factual Knowledge       | CO1      |            |       |         |          |        |
|                         |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       |         |          |        |
| Procedural Knowledge    |          |            | CO3   | CO4     |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

## Mapping of Course Outcomes to Program Outcomes:

| CO/PO       | PO1  | PO2  | PO3  | PO4  | PO5 | PO6  | PO7 | PO8 | PO9 | PO10 | Average |
|-------------|------|------|------|------|-----|------|-----|-----|-----|------|---------|
| CO1         | 3    | 2    | 2    | 1    | 1   | 1    | 1   | 1   | 2   | 1    | 1.5     |
| CO2         | 2    | 3    | 2    | 2    | 2   | 2    | 1   | 1   | 2   | 1    | 1.8     |
| CO3         | 1    | 2    | 3    | 1    | 2   | 1    | 1   | 1   | 1   | 1    | 1.4     |
| <b>CO</b> 4 | 1    | 2    | 2    | 3    | 1   | 1    | 1   | 1   | 1   | 1    | 1.4     |
| Average     | 1.75 | 2.25 | 2.25 | 1.75 | 1.5 | 1.25 | 1   | 1   | 1.5 | 1    |         |

| Biotechnolog                                                                                                                                   | y and Bio                               | informatics                                            |                                     |                                                           |             | Dibrı                     | garh University                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|-------------|---------------------------|--------------------------------------|--|
| Title of the                                                                                                                                   | Course                                  |                                                        |                                     | Н                                                         | UMAN DI     | ISEASE AN                 | ND DISORDER                          |  |
| Category:                                                                                                                                      | Major                                   | Year                                                   | 3                                   | Credits                                                   | 4           | Course                    | BTNC12                               |  |
|                                                                                                                                                |                                         | Semester                                               | VI                                  |                                                           |             |                           |                                      |  |
| Instructiona                                                                                                                                   | l hours                                 | Lecture                                                | e                                   | Tutorial                                                  | Lab P       | ractical                  | Total                                |  |
|                                                                                                                                                |                                         | 30                                                     |                                     | 15                                                        | 3           | 30                        | 75                                   |  |
|                                                                                                                                                |                                         |                                                        | (                                   | Course Outline                                            |             |                           |                                      |  |
| <b>Unit 1: Disea</b><br>Introduction<br>Carriers, path                                                                                         | ase and d<br>to the tran<br>nogenic or  | isease transmi<br>smission cycle<br>ganisms and th     | ssion<br>of disea<br>eir chara      | se, Agent, Environme<br>cteristics.                       | nt, Host, V | Mar<br>ector, Patho       | ks:15, L:8, T:4<br>ogen, Categories, |  |
| Unit 2: Intro<br>prevention)                                                                                                                   | oduction (                              | to Communica                                           | ble dise                            | ases (Etiological fact                                    | ors signs a | nd sympto<br>Marks:15     | ms, control and<br>5, L:7, T:4, P:10 |  |
| Acute diarrho<br>Filaria, - Den<br>Introduction                                                                                                | eal diseas<br>gue, - Jap<br>to Viral, F | es, - Cholera, -<br>panese Encepha<br>Rickettsial, Bac | Typhoid<br>litis, Hep<br>terial and | l fever (Enteric fever<br>patitis<br>l Parasitic Zoonosis | ), - HIV/A  | IDS, - Lepr               | osy, - Malaria, -                    |  |
| <b>Practical</b><br>Demonstratio                                                                                                               | on and ide                              | ntification of ca                                      | ausative                            | organism of various d                                     | liseases by | microscopy                |                                      |  |
| Unit 3: Introduction to non-communicable diseases (Etiological factors signs and symptoms, control<br>and prevention) Marks:15, L:8, T:4, P:10 |                                         |                                                        |                                     |                                                           |             |                           |                                      |  |
| Cardiovascul                                                                                                                                   | ar Diseas                               | es: - Rheumatic                                        | Heart D                             | isease, - coronary art                                    | ery disease | - Hypertens               | sion, Cancer                         |  |
| <b>Practical</b><br>Demonstratio                                                                                                               | on of arter                             | ial blood press                                        | ure meas                            | urement                                                   |             |                           |                                      |  |
| Unit 4: Pren                                                                                                                                   | atal disea                              | se/ Neonatal I                                         | Disease                             |                                                           |             | Marks:15                  | 5, L:7, T:3, P:10                    |  |
| Down Syndro                                                                                                                                    | ome, CMI                                | L & AML, Sick                                          | le Cell A                           | Anemia, Thalassemia                                       |             |                           |                                      |  |
|                                                                                                                                                | ]                                       | Practical: Diff                                        | erentiatio                          | on of normal and abno                                     | ormal blood | l cells                   |                                      |  |
|                                                                                                                                                | ~                                       |                                                        |                                     |                                                           |             |                           |                                      |  |
| Modes of In                                                                                                                                    | -Semester                               | r Assessment:                                          |                                     |                                                           |             |                           | 40 Marks                             |  |
| 1. One                                                                                                                                         | sessional                               | test -                                                 |                                     |                                                           |             |                           | 10 Marks                             |  |
| 2. Any                                                                                                                                         | one of the                              | e following acti                                       | vities list                         | ed below -                                                |             |                           | 10 Marks                             |  |
| $\begin{array}{c} a \\ b \\ c \\ c$                                                                         | Assignmer                               | ll                                                     |                                     |                                                           |             |                           |                                      |  |
| b) (                                                                                                                                           | broup disc                              | cussion                                                |                                     |                                                           |             |                           |                                      |  |
| c) S                                                                                                                                           | seminar/P                               | resentation                                            |                                     |                                                           |             |                           |                                      |  |
| d) N                                                                                                                                           | Aultiple C                              | hoice Question                                         | IS                                  |                                                           |             |                           |                                      |  |
| 3. Pract                                                                                                                                       | ical In sei                             | mester Examina                                         | ation                               |                                                           |             |                           | 20 Marks                             |  |
| Attainment                                                                                                                                     | Strategie                               | 5                                                      |                                     |                                                           |             |                           |                                      |  |
| <ul><li>Feed</li><li>Activ</li></ul>                                                                                                           | back for e<br>vities                    | each LO                                                |                                     |                                                           |             |                           |                                      |  |
| SUGGESTE                                                                                                                                       | D READ                                  | INGS:                                                  |                                     |                                                           |             |                           |                                      |  |
| 1. Nelso                                                                                                                                       | on, D.L.,                               | Cox, M.M. (20                                          | 21) Lehi                            | ninger Principles of B                                    | siochemistr | y, 8 <sup>th</sup> Editio | on, WH Freeman                       |  |

and Company, New York, USA.

1.

- 2. Jeremy Berg; Gregory Gatto Jr.; Justin Hines; John L. Tymoczko; Lubert Stryer, Tenth Edition, 2023, W.H Freeman and Co.
- 3. Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists.
- 4. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons
- Victor W. Rodwell, David Bender, Kathleen M. Botham, Peter J. Kennelly, P. Anthony Weil (2018). Harper's Illustrated Biochemistry, 31<sup>st</sup> Edition, McGraw Hill / Medical Salisbury, F.B. and Ross, C.W. (1991) Plant Physiology, Wadsworth Publishing Co. Ltd

| NAME OF THE COURSE | : | <b>BIO-ENTREPRENEURSHIP AND COMMERCIALIZATION</b> |
|--------------------|---|---------------------------------------------------|
| COURSE TYPE        | : | MAJOR                                             |
| TOTAL CREDIT       | : | 4                                                 |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)                        |

**Course Description:** This course provides an immersive exploration of biotechnology entrepreneurship. Students will gain insights into industry basics, financial skills, startup strategies, and funding insights.

#### Prerequisites

- Interest in entrepreneurship and innovation.
- Openness to experiential learning and field visits.

Course Objectives: By studying this course, the students will be able to

- Understand biotech industry pathways, entrepreneurship, accounting basics, valuation, exit strategies, intellectual property, clinical trials, corporate structures, funding processes.
- Apply Lean Launchpad, conduct surveys, evaluate valuations, develop exit strategies, classify intellectual property, design trials, manage ownership, prepare funding proposals.
- Foster innovation, proactive commercialization, strategic financial management, appreciation for IP, ethical clinical research, entrepreneurship, risk-taking, resilience in funding.

Course Outcomes (COs): On completion of this Course, students will be able to -

**CO1:** Understand the Biotechnology Industry and its Commercialization Pathways

**LO 1.1:** Analyze and compare the commercialization pathways for drug, medical device, and diagnostic companies within the biotechnology industry.

LO 1.2: Evaluate the role of entrepreneurship and intrapreneurship in biotechnology.

LO 1.3: Apply the Lean Launchpad (LLP) methodology to biotechnology ventures.

**LO 1.4:** Conduct a Commercialization Knowledge Survey (CKS) to assess understanding of commercialization strategies.

CO2: Apply Business Basics to Biotechnology Ventures

LO 2.1: Interpret financial statements and understand their significance in biotechnology ventures.

LO 2.2: Perform valuation of biotechnology companies and products.

LO2 .3: Evaluate different exit strategies and their implications for biotechnology startups.

CO3: Develop Skills for Starting a Biotechnology Startup

LO 3.1: Understand various corporate structures and their suitability for biotechnology startups.

LO 3.2: Explain concepts of ownership and vesting in the context of biotechnology startups.

LO 3.3: Implement customer development strategies as part of the LLP check-in process.

**LO 3.4:** Identify and access different funding sources for biotechnology startups, including crowdfunding.

CO4: Gain Practical Experience through Experiential Learning

**LO 4.1:** Participate in field visits to biotechnology startups to gain firsthand experience of the industry.

**LO 4.2:** Reflect on the experiential learning process and its impact on understanding biotechnology entrepreneurship.

LO 4.3: Create a mini-project on Biotechnology startup.

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          | CO1        |       |         |          |        |
| Conceptual Knowledge    |          |            |       | CO2     |          |        |
| Procedural Knowledge    |          |            |       |         |          | CO3    |
| Metacognitive Knowledge |          |            |       |         |          | CO4    |

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

# Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | -   | 2   | 1   | 1   | -   | 3   | 1   | 1   | 2   | 1    | 1.5     |
| CO2     | 1   | 2   | 1   | 1   | 1   | 3   | 1   | 1   | 2   | 1    | 1.4     |
| CO3     | 1   | 2   | 1   | 1   | 1   | 3   | 1   | 1   | 2   | 1    | 1.4     |
| CO4     | 1   | 1   | 1   | 1   | 3   | 1   | 2   | 1   | 1   | 1    | 1.3     |
| Average | 1.0 | 1.8 | 1.0 | 1.0 | 1.7 | 2.5 | 1.3 | 1.0 | 1.8 | 1.0  |         |

| Biotechnology                | and Bioinforn   | natics           |                  |                |         | Dibruge          | arh University |
|------------------------------|-----------------|------------------|------------------|----------------|---------|------------------|----------------|
| Title of the cou             | rse             | I                | <b>BIO-ENTRE</b> | PRENEURSH      | IIP AND | <b>COMMERCI</b>  | ALIZATION      |
| Category                     | Major           | Year<br>Semester | 3<br><b>VI</b>   | Credits        | 4       | Course code      | BTNC13         |
| T / 11                       |                 | Lec              | ture             | Tutoria        | ıl      | Practical        | Total          |
| Instructional ho             | ours            | 3                | 6                | 9              |         | 30               | 75             |
|                              |                 |                  | Course C         | Dutline        |         |                  |                |
| Unit 1: Introdu              | uction          |                  |                  |                |         | Marks 15 I       | L: 9, T: 3     |
| 1.1 Introduction             | n and Overvie   | ew of the Biote  | echnology Ind    | lustry         |         |                  |                |
| 1.2 Translation              | al biotechno    | logy industry    | v overview (i    | include the co | ommerci | ialization pathw | ays for drug,  |
| medical device,              | diagnostic co   | ompanies)        |                  |                |         |                  |                |
| 1.3 Entrepreneu              | irship/intrepre | eneurship,       |                  |                |         |                  |                |
| 1.4 Lean Launc               | hpad (LLP) r    | nethodology      |                  |                |         |                  |                |
| 1.5 Commercia                | lization Knov   | vledge Survey    | (CKS)            |                |         |                  |                |
| Unit 2: Busine               | ss Basics       |                  |                  |                |         | Marks 18         | L: 11, T: 3    |
| 2.1 Accounting               | basics (finan   | cial statement   | s)               |                |         |                  |                |
| 2.2 Valuation (V             | What's that co  | ompany worth     | ?)               |                |         |                  |                |
| 2.3 Exit strateg             | ies (How do I   | get my ROI?      | )                |                |         |                  |                |
| Unit 3: How to               | start a Start   | tup              |                  |                |         | Marks 15 I       | L: 10, T: 3    |
| 3.1 Corporate s              | tructure (LLC   | C, LLP, C-Cor    | p, S-Corp, etc   | .)             |         |                  |                |
| 3.2 Ownership/               | vesting         |                  |                  |                |         |                  |                |
| 3.3 LLP check                | in (customer o  | development)     |                  |                |         |                  |                |
| 3.4 Funding: th              | e funding pro   | cess, funding    | sources, Crov    | vd funding     |         |                  |                |
| Unit 4: Experi               | ential Learni   | ing              |                  |                |         | Marks 12 L       | : 6, P: 30     |
| 4.1 Case Study               |                 |                  |                  |                |         |                  |                |
| 4.2 Field visits             | to some of the  | e Biotechnolo    | gy related star  | rtups          |         |                  |                |
| 4.3 Prepare a m              | ini project on  | Biotechnolog     | gy startup       |                |         |                  |                |
| Modes of In S                | mostor Asso     | semant.          |                  |                |         | 40               | Morka          |
| 1 One see                    | sional test -   | ssment.          |                  |                |         | 40               | Marks          |
| $\frac{1}{2}  \text{Any on}$ | a of the follow | uning activition | listed helow     |                |         | 10               | Manka          |
| 2. Any on                    |                 | wing activities  | s listed below   | -              |         | 10               | Marks          |
| a) Fie                       | ld visit        |                  |                  |                |         |                  |                |
| b) Gro                       | oup discussion  | n                |                  |                |         |                  |                |
| c) Ser                       | ninar/Present   | ation            |                  |                |         |                  |                |
| 3. Mini pr                   | oject on Biot   | echnological S   | Startup          |                |         | <b>20</b> N      | Marks          |
| Attainment St                | rategies        |                  |                  |                |         |                  |                |
| Feedba                       | ck for each L   | 0                |                  |                |         |                  |                |
| <ul> <li>Activiti</li> </ul> | ies             | ~                |                  |                |         |                  |                |
|                              |                 |                  |                  |                |         |                  |                |
|                              |                 |                  |                  |                |         |                  |                |

- Suggested Readings
- **1.** Steve Blank and Bob Dorf: The Startup Owner's Manual: The Step-By-Step Guide for Building a Great Company. K & S Ranch. ISBN-13: 978-0984999309
- **2.** Craig Shimasaki, ed.: Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies. Elsevier Inc., 2014. ISBN: 978-0-12-404730-3. Reading list is noted within course schedule.
- **3.** Lawton Robert Burns: The Business of Healthcare Innovation. Cambridge University Press, Cambridge UK, 2005
- 4. Burrill & Company Annual Biotechnology Industry Report
- **5.** William B. Bygrave and Andrew Zacharakis, 2009. The Portable MBA in Entrepreneurship. Wiley & Sons, Hoboken, NJ.
- **6.** Jeffrey A. Timmons, Andrew Zacharakis, Stephen Spinelli, 2004. Business Plans That Work: A Guide for Small Business. McGraw Hill.

| NAME OF THE COURSE | : | GENOMICS AND PROTEOMICS    |
|--------------------|---|----------------------------|
| COURSE TYPE        | : | MAJOR                      |
| TOTAL CREDIT       | : | 4                          |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem) |

**Course Description:** This course covers the fields of genomics and proteomics with a global OMICS approach. Genome sequences, protein structures, functions and relevant metabolic pathways are evaluated with computational data. Topics covered include introduction to various widely used bioinformatics databases, mapping and sequencing techniques. Students gain hands-on experience in comparison of different genomes. Current technologies covering different Next Generation Sequencing (NGS) platforms are studied. Transcriptomics is covered in parallel. Contemporary topics such as cancer genomics, epigenomics, pharmacogenomics, microbiome and genome editing are studied.

#### Pre requisite

- Knowledge of Basis Biochemistry
- Basic knowledge of cell biology

### COURSE OBJECTIVES: The Objectives of this Course are to

- Knowledge on techniques of Genome and Proteome research.
- Understand the prokaryotic and eukaryotic genome constitution
- Underpin the contemporary genome analysis techniques
- Understand contemporary genome sequencing principle and working methodology.
- Understand the various regular, contemporary and high throughput proteomic and genomic tools, their underlying principles and varied applications.
- Understand the protein sequencing and identification techniques and explore its myriad scope and applications

## COURSE OUTCOME (CO): The objectives of this Course are to

CO1: Examine of genomics and proteomics application in biological research can benefit in solving the complex biological and biochemical processes regardless of the type of organism which is the model for them.

LO 1.1: Defining prokaryotic and eukaryotic Nucleic Acid Extraction methods

LO 1.2: Demonstrate the Tools and Techniques in Genomics analysis

- LO 1.3: Analyze the different mode and methods of DNA extraction.
- CO2: Assessment of Protein identification and interaction technique.
  - LO 2.1: Defining the tools and techniques of Protein identification.
  - LO 2.2: Demonstrate the methods of Protein identification.
  - LO 2.3: Evaluation of protein and peptide sequence determination.
- CO3: Assessment of Genome sequencing projects
  - LO 3.1: Defining the contemporary genome sequencing principles.
  - LO 3.2: Discuss the Principle and methodology of genome sequencing
  - LO 3.3: Evaluation of sequencing methods
- CO4: Assessment of Scope, prospects and challenges of Proteomic and Genomics studies
  - LO 3.1: Defining the of Scope, prospects and challenges of Proteomic and Genomics studies
  - LO 3.2: Discuss the High Throughput protein functional analysis
  - LO 3.3: Evaluation of Application of Proteomic and Genomics in Gene Expression

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       |          |            |       |         |          |        |
| Conceptual Knowledge    |          |            |       | CO1     | CO2      |        |
| Procedural Knowledge    |          |            |       |         | CO3,     |        |
|                         |          |            |       |         | CO4      |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

# Mapping of Course Outcomes to Program Outcomes

| CO/PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | Average |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
| CO1     | 3   | 2   | 1   | 1   | 2   | 1   | 3   | -   | 1   | 1    | 1.7     |
| CO2     | 2   | 2   | 1   | -   | 3   | 1   | 3   | -   | 1   | 1    | 1.8     |
| CO3     | 3   | 2   | 1   | -   | 3   | -   | 3   | -   | 1   | 1    | 2.0     |
| CO4     | 2   | 2   | 1   | 1   | 3   | -   | 2   | 1   | 1   | 1    | 1.6     |
| Average | 2.5 | 2.0 | 1.0 | 1.0 | 2.8 | 1.0 | 2.8 | 1.0 | 1.0 | 1.0  |         |

| Biotechnology a                                            | and Bioinforma                                       | itics                                                 |                                                                |                                                    |                                 | Dibrug                                                  | arh University                                 |  |  |
|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------------------------|------------------------------------------------|--|--|
| Title of the cou                                           | rse                                                  |                                                       |                                                                |                                                    | GENO                            | DMICS AND PR                                            | OTEOMICS                                       |  |  |
| Category                                                   | Major                                                | Year<br>Semester                                      | 3<br>VI                                                        | Credits                                            | 4                               | Course code                                             | BTNC14                                         |  |  |
| Instructional ho                                           |                                                      | Lect                                                  | ure                                                            | Tutori                                             | al                              | Lab Practical                                           | Total                                          |  |  |
| Instructional no                                           | burs                                                 | 3                                                     | 0                                                              | 15                                                 |                                 | 30                                                      | 75                                             |  |  |
|                                                            |                                                      |                                                       | Course                                                         | Outline                                            |                                 |                                                         |                                                |  |  |
| Unit 1: Struc<br>genome, Extra<br>Chloroplast).            | tural organiza<br>a-chromosoma                       | ation of the Ge<br>al DNA: bacter                     | enome: Over<br>rial plasmids                                   | view of Proka<br>s, Eukaryotic o                   | aryote ge<br>organelle          | Marks: 15,<br>enome and Eukar<br>es genomes (Mito       | L:8,14,P:15<br>yotic nuclear<br>chondria and   |  |  |
| <b>Practical</b><br>a) Demor                               | nstration of Pro                                     | karyotic and Eul                                      | caryotic Nucle                                                 | eic acid extraction                                | on.                             |                                                         |                                                |  |  |
| Unit 2: Prote<br>Tandem Mass<br>system, co-im<br>Practical | ein identifica<br>s-spectrometer<br>munoprecipita    | tion and inter<br>r, peptide mass<br>ation , Affinity | action: Pept<br>fingerprinti<br>chromatogra                    | ide sequence<br>ing, protein in<br>phy, FRET, SI   | determi<br>teraction<br>PR.     | Marks: 15,<br>nation; Protein id<br>i: genetic test, ye | L:7,T4,P:15<br>dentification:<br>east 2-hybrid |  |  |
| a) Demor                                                   | nstration of pro                                     | tein estimation a                                     | nd quantificat                                                 | ion                                                |                                 |                                                         |                                                |  |  |
| Unit 3: Geno<br>Sequencing pr                              | me Sequenci<br>ojects: in mic                        | ing projects:<br>robes, plants, a                     | Principle ar<br>nd animals H                                   | nd methodolo<br>Iuman Genom                        | gy of g<br>e Project            | Marks<br>genome sequenci                                | : 15, L:7,14<br>ng, Genome                     |  |  |
| Application o<br>Protein discov                            | f Proteomic<br>ery, Biomarke<br><i>L: Lect</i>       | and Genomics<br>er discovery, the<br>ures             | action protects: Application<br>erapeutic ma<br><i>T: Tuto</i> | on of Proteom<br>nagement of d<br>orials           | ic and C isease.                | Genomics in Gene<br>P: Practical                        | e Expression,                                  |  |  |
|                                                            |                                                      |                                                       |                                                                |                                                    |                                 | 40 3 4                                                  |                                                |  |  |
| Modes of In-So                                             | emester Assess                                       | sment:                                                |                                                                |                                                    |                                 | 40 Mai<br>10 Mai                                        | r KS<br>r ks                                   |  |  |
| 1.  One set                                                | e of the follow                                      | ving activities lie                                   | ted below                                                      |                                                    |                                 | 10 Ma<br>10 Ma                                          | rks                                            |  |  |
| 2. Ally $0$                                                | signment                                             | activities its                                        | ied below -                                                    |                                                    |                                 | 10 Marks                                                |                                                |  |  |
| a) A                                                       | coup discussion                                      |                                                       |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| c) Se                                                      | minar/Presents                                       | ation                                                 |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| d) M                                                       | ultiple Choice                                       | Questions                                             |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| 3 Practic                                                  | al In semester                                       | Examination                                           |                                                                |                                                    |                                 | 20 M                                                    | arks                                           |  |  |
| 5. 114040                                                  | an in semester                                       | Examination                                           |                                                                |                                                    |                                 | 20 111                                                  | ai K5                                          |  |  |
| Attainment St                                              | rategies                                             |                                                       |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| <ul> <li>Feedba</li> </ul>                                 | ack for each LC                                      | )                                                     |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| Activit                                                    | ties                                                 |                                                       |                                                                |                                                    |                                 |                                                         |                                                |  |  |
| SUGGESTED<br>1. Albert<br>Cell, (<br>2. Browy              | <b>READINGS</b><br>ts, B., Bray, D<br>Garland Publis | D., Levis, J., Ra<br>shing, New Yor                   | ff, M., Robe<br>k. 5 NCBI w<br>Garland Scie                    | erts, K., Watsor<br>veb page Kelln<br>ence 2006    | n, J.D. (1<br>er R., Lo         | 994) Molecular B<br>httspeich F, Meyer                  | iology of the<br>H.E. 1999                     |  |  |
| 3. Primr<br>2006                                           | ose S & Twy                                          | man R, Princip                                        | les of Gene                                                    | Manipulation                                       | and Gen                         | omics, 7th Edition                                      | n, Blackwell,                                  |  |  |
| 4. Voet I<br>5. Glick<br>6. Camp                           | D, Voet JG &<br>BR & Pasterr<br>bell AM & I          | Pratt CW, Fund<br>nak JJ, Molecul<br>Heyer LJ, Disc   | amentals of<br>ar Biotechno<br>covering Gen                    | Biochemistry,<br>logy, 3rd Editi<br>nomics, Protec | 2nd Edit<br>on, ASM<br>omics an | ion. Wiley 2006<br>I Press, 1998.<br>d Bioinformatics,  | 2 <sup>nd</sup> Edition.                       |  |  |
| Benja                                                      | min Cumming                                          | gs 2007                                               |                                                                |                                                    |                                 | ,                                                       |                                                |  |  |

- 7. Micro-characterization of Proteins, WILEY-VCH second edition
- 8. Schägger H. 2006 Tricine-SDS-PAGE, Nature Protocols Vol. 1. No.1 16-22 Wittig I., Braun H.-P.

- 9. Schägger H. 2006 Blue native PAGE, Nature Protocols Vol. 1. No.1 418-428. E. De Hoffman, V.
- 10. Stroobant, 2002 Mass Spectrometry Principle and Applications, Wiley, Chichester, 239- 275. A. J. R. Heck, R. H.H. van den Heuvel, 2004 Mass Spectrom
- 11. Bengt Nolting 2004 Methods in modern Biophysics. Springer-verlag

| NAME OF THE COURSE | : | FUNDAMENTALS OF PROGRAMMING |
|--------------------|---|-----------------------------|
| COURSE TYPE        | : | MAJOR                       |
| TOTAL CREDIT       | : | 4                           |
| TOTAL MARKS        | : | 60 (End Sem) + 40 (In Sem)  |

**Course Description:** This fundamental course in programming is designed for undergraduate students, providing an essential gateway to programming knowledge. It aims to develop a foundational understanding of the principles and concepts of programming languages. Students will gain basic proficiency in programming, learning fundamental concepts such as variables, data structures, loops, and functions. Additionally, the course will focus on developing skills in devising algorithms to solve problems specifically related to biological sciences. Through a combination of lectures, tutorials, and practical exercises, students will build a solid base in programming, enabling them to tackle computational challenges in their field.

## Prerequisites

There are no formal prerequisites for this course. It is designed for undergraduate students with no prior experience in programming or computer science. The only requirements are an interest in biological sciences and a willingness to learn programming concepts. Basic mathematical skills and familiarity with high school-level biology will be beneficial but are not mandatory.

COURSE OBJECTIVES: The objectives of this Course are to -

- Develop a foundational understanding of the principles and concepts of programming languages.
- Gain basic proficiency in programming language, including fundamental programming concepts such as variables, data structures, loops, and functions.
- Develop skills in devising algorithm to solve problems related to biological sciences.

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO 1:** Understand the fundamental concepts and principles of programming, including types of programming languages, applications of programming, and basic algorithms.

- LO 1.1: Comprehend the scope, significance, and applications of programming in various fields.
- LO 1.2: Identify and differentiate between various types of programming languages (e.g., procedural, object-oriented, functional) and understand their uses.
- LO 1.3: Understand the practical applications of programming in solving real-world problems.
- LO 1.4: Understand basic algorithms and write simple programs.

**CO 2:** Gain proficiency in C programming language, including the use of constants, variables, data types, operators, expressions, and control constructs.

- LO 2.1: Understand and use constants and variables in C programming.
- LO 2.2: Use and manipulate various data types in C.
- LO 2.3: Apply operators and expressions in C programs.
- LO 2.4: Manage input and output operations in C.
- LO 2.5: Implement decision-making constructs like if-else and switch-case in C.
- LO 2.6: Use looping constructs (for, while, do-while) in C programs.

CO 3: Develop skills in handling arrays and strings in C, enabling effective data manipulation and storage.

- LO 3.1: Declare, initialize, and manipulate character arrays and strings.
- LO 3.2: Use string handling functions in C programs.
- LO 3.3: Understand and implement single-dimensional and multi-dimensional arrays in C.

**CO 4:** Understand advanced programming concepts in C, including pointers, file handling, and the use of functions.

- LO 4.1: Understand and use pointers in C.
- LO 4.2: Perform file handling operations (open, close, read, write) in C.
- LO 4.3: Create and use functions with arrays and loops in C.

# Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
|                         |          |            |       |         |          |        |
| Factual Knowledge       | CO1      |            |       |         |          |        |
|                         |          |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       | CO4     |          |        |
|                         |          |            |       |         |          |        |
| Procedural Knowledge    |          |            | CO3   |         |          |        |
|                         |          |            |       |         |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |
|                         |          |            |       |         |          |        |

# Mapping of Course Outcomes to Program Outcomes:

| CO/PO   | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9  | PO10 | Average |
|---------|-----|-----|------|-----|-----|-----|-----|-----|------|------|---------|
| CO1     | 1   | 2   | 2    | 2   | 1   | 1   | 2   | 1   | 2    | 1    | 1.5     |
| CO2     | 1   | 2   | 1    | 2   | 1   | 1   | 2   | 1   | 1    | 1    | 1.3     |
| CO3     | 1   | 2   | 1    | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1.1     |
| CO4     | 1   | 2   | 1    | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1.1     |
| Average | 1   | 2   | 1.25 | 1.5 | 1   | 1   | 1.5 | 1   | 1.25 | 1    | 1.25    |

| Biotechnology                          | and Bioinfor                                                                    | matics                             |                             |                                                  |                         | Dibrugar                          | h University                        |  |  |
|----------------------------------------|---------------------------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------------------------------|-------------------------|-----------------------------------|-------------------------------------|--|--|
| Title of the cou                       | TALS OF PROG                                                                    | RAMMING                            |                             |                                                  |                         |                                   |                                     |  |  |
| Category                               | Major                                                                           | Year<br>Semester                   | 3<br>VI                     | - Credits 4                                      |                         | Course code                       | BTNC15                              |  |  |
| Instructional h                        |                                                                                 | Lectu                              | ure                         | Tutori                                           | al                      | Lab Practical                     | Total                               |  |  |
|                                        | Juis                                                                            | 37                                 |                             | 08                                               |                         | 30                                | 75                                  |  |  |
|                                        |                                                                                 |                                    | Course (                    | Outline                                          |                         | Montra                            | 15 L.C D.O                          |  |  |
| <b>Unit 1:</b> Introc<br>Algorithm and | luction to Paperson programming                                                 | rogramming, T                      | ypes of pro                 | ogramming la                                     | nguage,                 | Application of P                  | rogramming,                         |  |  |
| Unit 2: Const<br>operations, Dec       | ants and Va<br>cision making                                                    | riables, Data 7<br>g and branching | Types, Oper<br>, Decision M | ators and Ex<br>Taking and Lo<br>Defining the sy | pression,<br>oping      | Marks: 15, L: 8<br>Managing input | <b>8, T: 5, P: 10</b><br>and output |  |  |
| Programs to us                         | e if-else, nes                                                                  | ted if-else, swite                 | ch-case cons                | structs, Progra                                  | ams to te               | st looping construe               | cts for, while                      |  |  |
| and do-while (                         | sum of n nu                                                                     | mbers, max of                      | n numbers,                  | fibonacci seri                                   | es, amsti               | rong number, prin                 | ne number),                         |  |  |
| Programs to tes                        | st nested 100]                                                                  | ps(preferably nuris): Sum of set   | imber pyrar                 | $t_0 X + X^2 + X^2$                              | m to test $3 + + x^{4}$ | use arrays single                 | dimensional,                        |  |  |
| user.                                  | mai(3x3 mau                                                                     | ix), Suill of set                  | ies siiniai                 | ιο ατα 2τα                                       | JTTA                    | In where x and its                | are given by                        |  |  |
|                                        |                                                                                 |                                    |                             |                                                  |                         |                                   |                                     |  |  |
|                                        |                                                                                 |                                    |                             |                                                  | ** • • •                | Marks: 15, L: 8                   | 8, T: 5, P: 10                      |  |  |
| Unit 3: Charac                         | ter Array and                                                                   | Strings, Declar                    | ing and Init                | ializing String                                  | Variable                | s, String Handling                | Functions                           |  |  |
| Tractical. 110g                        |                                                                                 | use string and a                   | IIIay                       |                                                  |                         | Marks: 15 L ·                     | 8 T· 5 P·10                         |  |  |
| Unit 4: Pointe                         | rs. File Hand                                                                   | ling and Function                  | ons                         |                                                  |                         | Marks. 10, 12.                    | 0, 1, 1.10                          |  |  |
| Practical: Prog                        | gram in C to                                                                    | use pointers, ope                  | ening, closi                | ng and saving                                    | a file in               | C, Using function                 | s with arrays                       |  |  |
| and loop                               |                                                                                 |                                    | -                           |                                                  |                         | -                                 | -                                   |  |  |
| Where                                  | L:                                                                              | Lectures                           |                             | T: Tutoria                                       | ls                      | P                                 | P: Practical                        |  |  |
| Modes of In-S                          | emester Asso                                                                    | essment:                           |                             |                                                  |                         |                                   | 40 Marks                            |  |  |
| 1. One se                              | ssional test -                                                                  |                                    |                             |                                                  |                         |                                   | 10 Marks                            |  |  |
| 2. Any or                              | e of the follo                                                                  | owing activities                   | listed below                | 7 <b>_</b>                                       |                         |                                   | 10 Marks                            |  |  |
| a) As                                  | signment                                                                        |                                    |                             |                                                  |                         |                                   |                                     |  |  |
| b) Gr                                  | oup discussio                                                                   | n                                  |                             |                                                  |                         |                                   |                                     |  |  |
| c) Sei                                 | ninar/Presen                                                                    | tation                             |                             |                                                  |                         |                                   |                                     |  |  |
| d) Mu                                  | Itiple Choice                                                                   | Questions                          |                             |                                                  |                         |                                   |                                     |  |  |
| 3. Practic                             | al In semeste                                                                   | r Examination                      |                             |                                                  |                         |                                   | 20 Marks                            |  |  |
| Attainment St                          | rategies                                                                        |                                    |                             |                                                  |                         |                                   |                                     |  |  |
| • Feedba                               | ck for each I                                                                   | .0                                 |                             |                                                  |                         |                                   |                                     |  |  |
| Activit                                | ies                                                                             |                                    |                             |                                                  |                         |                                   |                                     |  |  |
| SUGGESTED<br>1. E.Balagurus            | <b>READING</b><br>wamy . Progr                                                  | S:<br>amming In AN                 | SI C, 6th Ed                | lition 2012 Ta                                   | ta McGra                | aw HilL                           |                                     |  |  |
| 2. Byron Gottfr                        | ried . PROGI                                                                    | RAMMING WI                         | TH C, 3rd I                 | Edition 2010,                                    | Mcgraw                  | Hill Education                    |                                     |  |  |
| 3. Yaswant Kar                         | metkar. Let U                                                                   | Js C, 13th Editio                  | on 2012, BP                 | B Publication                                    |                         |                                   |                                     |  |  |
| A Vacuumt Kar                          | 4. Yaswant Karnetkar. Data Structure Using C, 2nd Edition 2003 BPB Publications |                                    |                             |                                                  |                         |                                   |                                     |  |  |

| NAME OF THE COURSE | : BIOINFORMATICS TOOLS AND TECHNIQUES |
|--------------------|---------------------------------------|
| COURSE TYPE        | : MINOR                               |
| TOTAL CREDIT       | : 4                                   |
| TOTAL MARKS        | : 60 (End Sem) + 40 (In Sem)          |

**Course Description:** This course is tailored for undergraduate bioinformatics students, providing a comprehensive introduction to computer software and hardware. It aims to equip students with essential knowledge and skills in understanding and utilizing computer systems for bioinformatics applications. The course is structured into four units, covering fundamental concepts of computer hardware, operating systems, software applications, and practical computing skills. Through a combination of lectures, tutorials, and hands-on exercises, students will gain a solid foundation in computer technology relevant to their field.

## Prerequisites

There are no formal prerequisites for this course. It is designed for undergraduate students with no prior experience in computer software and hardware. An interest in bioinformatics and a willingness to learn about computer technology are the only requirements. Basic mathematical skills and familiarity with high school-level biology will be beneficial but are not mandatory.

COURSE OBJECTIVES: The objectives of this Course are to -

- Recall and list the basic components of computer hardware and operating systems .
- Explain the functions and significance of computer hardware components and the essential processes of operating systems in the context of bioinformatics.
- Demonstrate the assembly and disassembly of computer hardware components and the installation/configuration of software applications necessary for bioinformatics tasks
- Differentiate between various types of computer architectures and operating systems, assessing their suitability and advantages for bioinformatics applications.

Course Outcomes (CO): On completion of this Course, students will be able to -

**CO1:** Understand the fundamentals of computer hardware.

- LO 1.1: Identify and describe the basic components of computer hardware.
- LO 1.2: Explain the function and importance of each hardware component.
- LO 1.3: Analyze the basic concepts of computer architecture and data processing.
- LO 1.4: Apply practical skills in assembling and disassembling computer parts.

CO2: Gain proficiency in operating systems and essential software applications for bioinformatics.

- LO 2.1: Describe different operating systems used in bioinformatics.
- LO 2.2: Explain the core functions and management processes of operating systems.
- LO 2.3: Install and configure essential software applications for bioinformatics tasks.
- LO 2.4: Utilize software applications like text editors, spreadsheets, and web browsers for bioinformatics purposes.

**CO3:** Develop proficiency in phylogenetic analysis for understanding evolutionary relationships.

- LO 1.1: Define phylogenetics and its significance in evolutionary biology.
- LO 1.2: Explain the principles behind phylogenetic trees and their representation of evolutionary relationships.
- LO 1.3: Compare and contrast different methods of phylogenetic analysis, including distance-based methods, maximum likelihood, and Bayesian inference.
- LO 1.4: Interpret phylogenetic trees and infer evolutionary patterns and relationships among species.

- LO 1.5: Install, configure, and utilize popular software packages for phylogenetic analysis, such as PHYLIP, RAxML, and MrBayes.
- LO 1.6: Apply phylogenetic analysis techniques to real biological data sets, constructing phylogenetic trees and analyzing their topology.
- LO 1.7: Critically evaluate the reliability of phylogenetic reconstructions and understand the limitations of phylogenetic analysis methods.
- LO 1.8: Participate in practical exercises to develop hands-on skills in phylogenetic analysis, collaborating with peers to solve analysis problems and interpret results.

CO4: Acquire practical computing skills for bioinformatics data management and analysis.

- LO 4.1: Implement data management and storage solutions for bioinformatics.
- LO 4.2: Explore bioinformatics tools and databases for data analysis.
- LO 4.3: Apply practical skills in data analysis and visualization for bioinformatics.
- LO 4.4: Engage in hands-on projects involving real bioinformatics data.

#### Cognitive Map of Course Outcomes with Bloom's Taxonomy

| Knowledge Dimension     | Remember | Understand | Apply | Analyse | Evaluate | Create |
|-------------------------|----------|------------|-------|---------|----------|--------|
| Factual Knowledge       | CO1      |            |       |         |          |        |
| Conceptual Knowledge    |          | CO2        |       |         |          |        |
| Procedural Knowledge    |          |            | CO3   | CO4     |          |        |
| Metacognitive Knowledge |          |            |       |         |          |        |

#### Mapping of Course Outcomes to Program Outcomes:

| CO/PO   | PO1  | PO2 | PO3 | PO4  | PO5  | PO6 | PO7  | PO8  | PO9 | PO10 | Average |
|---------|------|-----|-----|------|------|-----|------|------|-----|------|---------|
| CO1     | -    | -   | -   | -    | 2    | -   | 3    | 2    | -   | -    | 0.7     |
| CO2     | 1    | -   | -   | 3    | 1    | -   | 3    | 1    | -   | -    | 0.9     |
| CO3     | -    | -   | -   | 2    | 2    | -   | -    | 2    | -   | -    | 0.6     |
| CO4     | -    | -   | -   | -    | 2    | -   | 3    | 2    | -   | -    | 0.7     |
| Average | 0.25 | -   | -   | 1.25 | 1.75 | -   | 2.25 | 1.75 | -   | -    | 0.72    |

| Biotech                                                                                                                                                                                                                                                                                                                | iotechnology and Bioinformatics Dibrugarh University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|------------------------|------------|---------------|----------------------------------|--|--|
| Title of                                                                                                                                                                                                                                                                                                               | the cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rse                                                                                          | BIOINFORMATICS TOOLS AND TECHNIC         |                                  |                        |            |               |                                  |  |  |
| Categor                                                                                                                                                                                                                                                                                                                | ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minor                                                                                        | Year<br>Semester                         | 3<br>VI                          | Credits                | 4          | Course code   | BTNM06                           |  |  |
| Instruct                                                                                                                                                                                                                                                                                                               | ional ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ours                                                                                         | Lect                                     | ture                             | Tutori                 | al         | Lab Practical | Total                            |  |  |
| motraet                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              | 3                                        | 7                                |                        |            | 30            | 75                               |  |  |
| IInit 1.                                                                                                                                                                                                                                                                                                               | Course Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
| <ul> <li>i. Introduction to computer hardware components (CPU, memory, storage, I/O devices)</li> <li>ii. Understanding the function and importance of each component, Basic concepts of computer architecture and data processing</li> <li>Practical:</li> <li>Assembling and disassembling computer parts</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
| Unit 2:<br>i.<br>ii.<br>iii.                                                                                                                                                                                                                                                                                           | Unit 2: Operating Systems and Software ApplicationsMarks 15: L:6 T:2 P:10i. Overview of different operating systems (Windows, macOS, Linux)ii. Functions and management of operating systemsiii. Introduction to essential software applications for bioinformatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
| Unit 3:                                                                                                                                                                                                                                                                                                                | Introdu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uction to Phy                                                                                | logenetics                               |                                  |                        |            | Marks 15 L    | .:8 T:2 P: 10                    |  |  |
| i.<br>ii.<br>iv.<br>v.<br>vi.<br>vi.<br><b>Practic</b><br>a)                                                                                                                                                                                                                                                           | <ul> <li>i. Overview of phylogenetics and its importance in evolutionary biology.</li> <li>ii. Understanding phylogenetic trees and their representation of evolutionary relationships.</li> <li>iii. Concepts of common ancestry, speciation, and molecular evolution.</li> <li>iv. Overview of genetic variation, mutation, and natural selection.</li> <li>v. Introduction to different methods of phylogenetic analysis, including distance-based methods, maximum likelihood, and Bayesian inference.</li> <li>vi. Understanding the principles and assumptions underlying each method. Overview of popular software packages used for phylogenetic analysis, such as PHYLIP, RAxML, and MrBayes.</li> <li>vii. Hands-on experience with software installation and basic usage.</li> </ul> |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
| b)<br>c)                                                                                                                                                                                                                                                                                                               | Buildin<br>Analyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g phylogenet<br>ing and interp                                                               | ic trees from n<br>preting phylog        | nolecular dat<br>enetic trees to | a.<br>o infer evolutio | onary rela | ationships.   |                                  |  |  |
| Unit 4:                                                                                                                                                                                                                                                                                                                | Practic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Computin                                                                                  | g Skills for B                           | ioinformatic                     | s                      |            | Marks 15 L    | .:6 T: 2 P:10                    |  |  |
| i.<br>ii.<br>iii.<br><b>Practic</b><br>a)                                                                                                                                                                                                                                                                              | <ul> <li>i. Data management and storage solutions</li> <li>ii. Introduction to bioinformatics tools and databases</li> <li>iii. Data analysis and visualization using Bioinformatics tool</li> </ul> Practical <ul> <li>a) Constone project involving Bioinformatics data</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |
| Where                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L: 1                                                                                         | Lectures                                 |                                  | T: Tutoria             | ls         | P             | P: Practical                     |  |  |
| <b>Modes</b><br>1.<br>2.                                                                                                                                                                                                                                                                                               | of In-Se<br>One ses<br>Any on<br>a) Ass<br>b) Gro<br>c) Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | emester Assessional test -<br>e of the follow<br>signment<br>oup discussion<br>ninar/Present | ssment:<br>wing activities<br>n<br>ation | listed below                     | -                      |            |               | 40 Marks<br>10 Marks<br>10 Marks |  |  |
| 3.                                                                                                                                                                                                                                                                                                                     | <ul> <li>c) Seminar/Presentation</li> <li>d) Multiple Choice Questions</li> <li>Practical In semester Examination</li> <li>20 Mar</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                          |                                  |                        |            |               |                                  |  |  |

#### **Attainment Strategies**

- Feedback for each LO
- Activities

#### **SUGGESTED READINGS:**

- 1. Computer Organization and Design: The Hardware/Software Interface by David A. Patterson and John L. Hennessy, 5th Edition, Morgan Kaufmann Comprehensive introduction to computer hardware and architecture.
- 2. Operating System Concepts by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, 10th Edition, Wiley Thorough overview of operating systems, including their functions and management.
- 3. Bioinformatics: Sequence and Genome Analysis by David W. Mount, 2nd Edition, Cold Spring Harbor Laboratory Press - Covers essential bioinformatics tools and methods, including phylogenetic analysis.
- 4. Practical Computing for Biologists by Steven H.D. Haddock and Casey W. Dunn, 1st Edition, Sinauer Associates Hands-on guide to programming, data management, and bioinformatics tools for biologists.
- 5. Phylogenetics: Theory and Practice of Phylogenetic Systematics by E.O. Wiley and Bruce S. Lieberman, 2nd Edition, Wiley-Blackwell Detailed introduction to phylogenetics, including methods of analysis and practical applications.