Syllabus for SEC in Physics (B.Sc. 3rd semester)

Course code: SEC

Title of the course: Physics Laboratory Instrument Handling and Maintenance

Nature of course: Skill Enhancement Course (SEC340)

Course credit: 03

Distribution of marks:40(Theory)+20(Practical) + 40(In Semester)

Course Objectives: The aim of this course is to

- 1. Teach students about handling procedures of various instruments in an undergraduate Physics laboratory.
- 2. Give students an idea of proper maintenance of instruments in a Physics laboratory.

Units	Contents	L	Т	Р	М	Hours
	1-Credit Theory					
1	General Physics of travelling microscope, bar pendulum & Kater's pendulum. Capillary flow method for viscosity measurement and Maxwell's needle method for determination of Young's modulus. Searle's & Angstrom's method for thermal conductivity measurement of copper, determination of temperature coefficient of resistance by platinum resistance thermometer (PRT).	5	2	-	7	7
2	Waves, Optics & Modern Physics: Study of sine, square and sawtooth waves in a CRO, obtaining Lissajous figures with the help of function generators & CRO. Formation of standing waves with the help of Melde's apparatus. Fundamentals of different types lenses, mirrors, prisms & gratings. Uses of Newton's ring apparatus for obtaining interference fringes. Safety issues in handling sodium vapour lamp and lasers (He-Ne, Solid State 532 nm Green Laser). Planck's constant apparatus, photoelectric effect study apparatus, e/m determination apparatus	5	3	_	10	8
3	Electricity & Magnetism: Basics of resistors, capacitors, inductors, rheostat, galvanometer, voltmeter, ammeter, potentiometer, RC, LR and LC circuits, LCR circuit, Carey Foster's bridge, De Sauty	5	1	-	6	6

	bridge, Anderson's bridge, Thevenin and					
	Norton's theorem verification apparatus.					
	Magnetic susceptibility measurement of					
	solids, Apparatus for measurement of					
	susceptibility of paramagnetic solution.					
4	Solid State Electronic Components and	5	2	-	7	7
	Devices:					
	Identification of different types of diodes,					
	transistors, LEDs, etc. Common IC packages					
	such IC 741, timer IC 555, etc. Different					
	modular practical kits such as design of a					
	switch using transistor verification of OR					
	AND & NOT gates using NAND gates					
	design of a combinational logic system etc.					
	SP IV & Master Slava IV flip flops					
	Apparenties for studying V L characteristics					
	of DN innation diada zonar diada & colar					
	of PN Junction diode, Zener diode & solar					
	Cells, BJI in CE mode, Colpiu's oscillator,					
	Phase-shift oscillator, Digital to Analog					
	converters.					
	2-Credits Practical					
	(Demonstration & Laboratory)					
Lab	1. To know how to use the horizontal and	-	-	28	30	56
	vertical vernier scales of a travelling					
	microscope for the measurement diameter of					
	a capillary tube.					
	2. To know how to connect a platinum					
	resistance thermometer for the measurement					
	of temperature coefficient of resistance. Take					
	a set of readings.					
	3. To set up a CRO for studying Lissajous					
	figures.					
	4. To set up Melde's apparatus for obtaining					
	standing waves on a stretched string.					
	5. To set up Newton's ring apparatus for					
	determining wavelength of sodium vapour					
	lamp.					
	6. To obtain diffraction spots with the help of					
	a diffraction grating and He-Ne laser/Solid					
	State green laser.					
	7. To determine Planck's constant with the					
	help of Planck's constant apparatus					
	8 To construct series and parallel ICR					
	circuits from individual components					
	9 To set up Gouv's experiment for the					
	magurament of suscentibility of					
	measurement of susceptionity of				1	

paramagnetic solution.					
10. To learn how to use NAND gates for					
designing various logic combinations.					
11. To connect a zener diode in a circuit for					
voltage regulation (with minimum					
components).					
Total	20	8	28	60	84

(L=Lecture, T=Tutorial, P=Practical, M=Marks)

Mode of In-semester assessment:

- (i) Viva-voce/Assignments/Attendance (Marks 20)
- (ii) Two In-semester Examinations (Marks 20)

Learning outcomes: After successful completion of the course, students will acquire the much required knowledge for handling some common and few special instruments belonging to different branches of Physics. Also, they will be aware of the safety rules & proper maintenance procedures in Physics laboratories.

Suggested reading:

- 1. Mechanics-D.S. Mathur, P.S. Hemne (S. Chand & Co.)
- 2. Thermal Physics, S.C. Garg, R.M. Bansal, C.K. Ghosh (Tata McGraw Hill)
- 3. Concepts in Thermal Physics, S.J. Blundell, K.M. Blundell (Oxford Univ. Press)
- 4. Advanced Practical Physics for students, B.L. Flint, H.T. Worsnop (Methuen & Co. Ltd.-London)
- 5. A text book of Practical Physics, I. Prakash, R. Krishna (Kitab Mahal)
- 6. A laboratory manual of Physics for undergraduate classes, D.P. Khandelwal (Vani Publication)
- 7. Vibration & Waves, A.P. French (CBS)
- 8. Vibration & Waves, G.C. King (Wiley)
- 9. Optics, E. Hecht (Pearson Education)
- 10. Optics, A. Ghatak (Tata McGraw Hill)
- 11. Elements of Modern Physics, R. Murugeshan, K. Sivaprasath (S. Chand & Co.)
- 12. Concepts of Modern Physics, A. Beiser (Tata McGraw Hill)
- 13. Electricity, Magnetism & Electromagnetic Theory, S. Mahajan (Tata McGraw Hill)
- 14. Electricity & Magnetism, E.M. Purcell (McGraw Hill Education)
- 15. Digital Principles and Applications, A.P. Malvino, D.P. Leach (Tata McGraw Hill)
- 16. Digital Computer Electronics, A.P. Malvino, J.A. Brown (Tata McGraw Hill)
- 17. Digital Electronics, G.K. Kharate (Oxford University Press)
- 18. Digital Circuits & Systems, Venugopal (Tata McGraw Hill)
- 19. Integrated Electronics, J. Millman, C.C. Halkias (Tata McGraw Hill)
- 20. Electronic Devices & Circuits, S. Salivahanan, N.S. Kumar (Tata McGraw Hill)