Detailed syllabus of Skill Enhancement Course

Title of course	: MATLAB PROGRAMMING
Course Code	:SEC337
Nature of course	: SKILL ENHANCEMENT COURSE
Total credits	: 03
Distribution of mar	ks: 60 (PRACTICAL) + 40 (In-sem)

Course Objectives:

1. To introduce the students to MATLAB as programming and scientific computing tool.

2. To enable the students to solve basic problems and matrix operations using MATLAB.

3. To introduce the students to basic numerical techniques to solve first order ordinary differential equations, numerical integration

4. To familiarize the students with basic plotting tools available in MATLAB

Unit	Contents	L	Т	P	M	Hours
Unit 1:	Starting MATLAB, working in	2	-	-	2	2
Introduction	command window, arithmetic					
to MATLAB	operations, display formats,					
	elementary maths built in functions,					
	defining scalar variables, useful					
	command for managing variables,					
	script files					
Practical	Aim: 1. To Understand the	-	-	4	2	4
	MATLAB Workspace a) start up					
	MATLAB b) type commands in					
	main window c) change current					
	directory					
	2. To use MATLAB as a calculator:					
	a) perform some arithmetic					
	calculations					
	b) understand the importance of					
	operators, and functions					
	c) use MATLAB's help files					
	d) use functions like sin x , cos x ,					
	or $ x $ to solve problems					
	3. To understand the purpose of					
	variables and how to create					
	variables.					
	4. To write a script M-File (a list of					

	MATLAB commands, saved in a					
	file) with an emphasis on using					
	appropriate comments					
Unit 2:	1 and 2 dimensional arrays, addition	2	-	-	7	2
Basic	and subtraction, array multiplication					
mathematical	and division, element-by-element					
operations	operations, generation of random					
with arrays	numbers, analyzing arrays using					
	built-in maths functions					
Practical	Aim: 1. To learn how to create 1	-	-	8	7	8
	and 2-D arrays, understand the					
	advantages of the different ways of					
	creating arrays including the					
	standard format and the linspace					
	command.					
	2. To access specific numbers in					
	arrays using their position.					
	3. To use array commands to					
	perform different arithmetic					
	operations on arrays					
	4. To generate of random numbers					
Unit 3:	Basic plot commands: plot, fplot,	2	-	-	8	2
Graphics with	formatting a plot, subplots, basic 2D					
MATLAB	and 3D plots: Line plots, mesh and					
	surface plots, contour, View					
	command					
Practical	Aim: 1. To perform exercises on	-	-	8	8	8
	using basic commands to plot 2D					
	and 3D plots as mentioned above.					
	2. To learn different ways of					
	formatting the plots using basic					
	commands like xlabel, ylabel, axis,					
	3. To learn how to have multiple					
	graphs on the same figure using					
	hold on/off commands					
	4. 10 create subplots and					
IImit 4.	Conditional statements	4			10	4
	nosted loops application of break	4	-	-	10	4
Frogramming	nested loops, application of break					

in MATLAB	and continue commands					
Practical	Aim: 1. To write simple programs	-	-	16	10	16
	involving loops using commands					
	like for, while, if-else, return, etc.					
Unit 5:	5.1 Algebraic equations: Eigen	5	-	-	13	L-5
Mathematical	values, Eigen vectors, solution of a					
computing	system of linear equations.					
with						
MATLAB	5.2 Introduction to ordinary					
	differential equations (ODE),					
	solution of first order ODE,					
	numerical techniques: Trapezoidal					
	rule, Simpson's rule.					
Practical	Aim: 1. To evaluate Eigen values	-	-	24	13	24
	and Eigen vectors of a given matrix					
	2. To solve a system of linear					
	equations using Gauss elimination					
	method and Gauss Seidel method					
	3. To solve a first order ODE by					
	Euler's method and Runge Kutta					
	method					
	4. To evaluate numerical integration					
	by using Trapezoidal and Simpson's					
	rule.					

(L= Lecture, T= Tutorial, P = Practical, M = Marks)

Mode of In-semester assessment:

Examination	(Theory + Practical)/Assignments/Notebook/Attendance	(Marks 40))
-------------	---------------------	-----------------------------------	------------	---

(Marks 30) (Marks 30)

Mode of End-semester assessment:

Examination for 1 credit theory	
Examination for 2 credit practical	

Learner outcomes:

After the completion of these courses, the learner will be able to

- 1. Get a general understanding of the purpose of MATLAB.
- 2. Use MATLAB effectively to analyze and visualize data.
- 3. Have an in-depth understanding and use of MATLAB fundamental data structure.
- 4. Create and control simple plots and user interface graphics, objects in MATLAB.

5. Write simple programs to solve various numerical problems like solving a system of linear equations, perform numerical integrations, ODE, and so on.

Suggested readings:

1. A Guide to MATLAB - for Beginners and Experienced Users", 2nd Ed., Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg, Cambridge University Press, 2006.

2. Pratap Rudra, Getting started with MATLAB: A quick Introduction for Scientist and Engineers, Oxford University Press, 2010.

3. Wolfram S., The Mathematica, Cambridge University Press, 2003.