Department of Petroleum Technology Dibrugarh University

Add-on Course:

Geo-Sequestration of Anthropogenic CO₂with Enhanced Oil Recovery

Duration: 3 months Date of Commencement: 5th August 2024 Credits: 2

By Dr. Ranjan Phukan

Overview of the course:

One of the best practices for reducing anthropogenic CO_2 levels in the atmosphere is the long-term storage of CO_2 in geological formations, including depleted oil/gas reservoirs, deep saline aquifers, and coalbeds. In particular, CO_2 storage in depleted oil/gas reservoirs has several advantages, including reduced exploration costs, proven traps for holding liquids/gases for millions of years, known reservoir properties, and existence of basic injection-production infrastructures. In addition, the injection of CO_2 into depleted oil reservoirs has special significance owing to the storage of CO_2 as part of the enhanced oil recovery (EOR) process. In this regard, reservoir rock-fluid interactions are key mechanisms influencing the recovery of trapped oil and promoting the trapping of injected gas for longterm CO_2 sequestration. Hence, this 3-month course will provide hands-on activity with reservoir rock, crude oil, formation water, and their interactions with CO_2 gas.

This add-on course is specially designed for those wishing to gain a comprehensive understanding of the various aspects of the anthropogenic CO_2 injection process for EOR and storage.Starting with an overview of different oil recovery methods, the course will present the global warming and climate change aspectsassociated with anthropogenic CO_2 emissions.Additionally, the anthropogenic CO_2 capture technology, transport options, and utilization or sequestration disposition will be illustrated. Furthermore, the course willprovide a detailed understanding of the mechanisms responsible for CO_2 -EOR and geosequestration. Further, the latest information available on global anthropogenic CO_2 injection projects will be illustrated and the lessons learned. In addition, technologies promoting the efficient utilization of anthropogenic CO_2 for EOR and storage will be presented.

Course Contents:

Units	Contents	Contact hours			
		Lecture	Tutorial	Practical	Total
1	Oil recovery methods.	2			2
2	CO_2 injection as an enhanced oil recovery method.	3			3
3	Effect of anthropogenic CO ₂ emissions on global warming and climate change.	3			3
4	CO ₂ Capture Methods and Technologies	3			3
5	CO ₂ Transport and Utilization for Industrial Processes.	3	1		3
6	Anthropogenic CO ₂ Storage and enhanced Oil recovery	2	2		4
7	<i>CO</i> ₂ -reservoir rock-fluid Interactions.	2	1	3	6
8	Case Studies: Global CCUS Projects and LessonsLearned	2	1		3
9	At-scaledeploymentofanthropogenicCO2injectionasCCUS Technology	2	1	2	5
				Total	32

Assessment Plan

Туре	Description	Weightage	Marks
End-course Exam	Written exam	60%	60
In-course Exam	Written test	15%	15
	Assignment- written report	15%	15
	Objective type test	10%	10
	•	Total marks	100

Learning Outcome

On completion of the course, participants are expected to be able to:

- 1. Understand the different oil recovery methods, especially CO₂-EOR.
- 2. Perceive the importance of abatinganthropogenic CO₂ emissions for climate change mitigation.
- 3. Understand the different methods of carbon capture.
- 4. Describe the mechanisms of CO_2 -EOR and geo-sequestration.
- 5. Understand the CO₂-rock-fluid interactions that promote EOR and CO₂-storage.

- 6. Gain knowledge about the different operational CCUS projects of the world.
- 7. Evaluate the feasibility of CCUS deployment in any regional scale.

Books and References:

- 1. Gerhard, Lee C., William E. Harrison, and Bernold M. Hanson, eds. Geological perspectives of global climate change: AAPG Studies in Geology 47. No. 47. AAPG, 2001.
- Ampomah, William, Brian McPherson, Robert Balch, Reid Grigg, and Martha Cather. "Forecasting CO2 sequestration with enhanced oil recovery." Energies 15, no. 16 (2022): 5930.
- 3. Divison, AAPG Energy Minerals. "Carbon Dioxide Sequestration in Geological Media: State of the Science, AAPG Studies in Geology 59." (2010).
- 4. Maroto-Valer, M. Mercedes, ed. Developments and innovation in carbon dioxide (CO2) capture and storage technology: carbon dioxide (CO2) storage and utilisation. *Elsevier*, 2010.
- 5. Rackley, Steve A. Carbon capture and storage. Butterworth-Heinemann, 2017.
- 6. Ganguli, Shib Sankar. Integrated reservoir studies for CO2-enhanced oil recovery and sequestration: Application to an Indian mature oil field. Springer, 2017.
- 7. Saini, Dayanand. Engineering aspects of geologic CO2 storage: synergy between enhanced oil recovery and storage. Springer, 2017.
- 8. Bandyopadhyay, Amitava, ed. Carbon capture and storage: CO2 management technologies. CRC Press, 2014.
- 9. Wilcox, Jennifer. Carbon capture. Springer Science & Business Media, 2012.
- 10. PapersandJournalsofSocietyofPetroleumEngineers(SPE).

Contact person:

Dr. Ranjan Phukan, Assistant Professor, Department of Petroleum Technology Dibrugarh University, Assam-786004, India Phone: +91 6001779707 (M); +91 7086216075 (WhatsApp) E-mail: r.phukan@dibru.ac.in