FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP) IN PHYSICS DETAILED SYLLABUS OF 2ND SEMESTER

Course Code:SEC237

Title of the Course: Solar Energy Basics and System Design Nature of the Course: Skill Enhancement Course (SEC) End Semester: 80 Marks(60T+20P) In Semester: 20 Marks Total Credits: 03

COURSE OBJECTIVES:

- 1. To provide basic knowledge on solar energy with special emphasis on Solar Photovoltaic Systems.
- 2. To provide knowledge on various schemes undertaken by government for skill based green jobs as a career option.
- 3. To encourage entrepreneurship.

UNITS	CONTENTS	L	Т	P	Total
					Hours
	Classification of Energy Sources	4	-	-	4
(Marks 10)	Classification of energy sources, conventional (coal, oil and gas) and				
	renewable sources (solar, biomass, wind, hydro, geothermal, tidal,				
	OTEC); Sun as the source of energy.				
2	Basics of Electricity and Electronics	8	-	4	12
(Marks 20)	Electric charge and current, Ohm's law, Series and parallel				
	connection of resistance; Atomic structure revisited, semiconductors;				
	Intrinsic and extrinsic semiconductors, energy levels, electrical				
	conductivity, Fermi level, P-N junction diode, forward and reverse				
	biasing of P-N junctions, measuring instruments, DC power, AC				
	power, energy, earthing.				
3	Basics of Solar cell	14	-	8	22
(Marks 35)	Photovoltaic effect, Solar cell and its function, solar technologies,				
	solar cell parameters, efficiency of solar cell, new generation of solar				
	cell materials, solar PV module, rating of solar PV module, PV				
	module parameters, measuring module parameters, efficiency of PV				
	module, connection of PV module in series and parallel, estimation				
	and measurement of PV module power, selection of PV module.				
	Types of solar PV system, design methodology for SPV system.				
4	Maintenance of SPV Systems	6	-	-	6
(Marks 15)	Tools required for maintenance, preventive maintenance of SPV				
	systems, Factors effecting the SPV system performance,				
	Financial Models and Career Opportunities, Different financial				
	models associated with PV systems and emerging trends, various				
	government schemes on skilled based green jobs as a career option				
		32	-	12	44

where, L: Lectures T: Tutorials P: Practical

Modes of In-semester assessment: (20 Marks)

- One Test =10Marks
- Others (Any one) =10Marks
 - Seminar/Poster presentation
 - Peer teaching and discussion
 - Project report submission

Learner Outcomes:

- 1. A student will have skill based knowledge about the emerging area of renewable energy systems.
- 2. A student will have knowledge about the design and maintenance of Solar Photovoltaic Systems.
- 3. A student will be able to consider solar energy as a means of self employment and source of income.

Reading List:

- 1. V.K Mehta, Rohit Mehta; Principles Of Electronics, S. Chand
- 2. Solanki C. S. (2009); Solar Photovoltaics: Fundamentals, Technologies and Applications, Prentice Hall India.
- 3. Reinders A., Verlinden P., Sark W., Freundlich A., (2017); Photovoltaic Solar Energy: From Fundametal to Applications, Wiley.
- 4. Bube R.H. (1989); Photovoltaic Materials, Imperial College Press
- 5. Partain L.D. (ed) (1995); Solar Cells and their Applications, John Wiley
- 6. Rauschenbach H.S. (1980); Solar Cell Array Design Handbook, Van Nostrand Reinfold.

Solar Energy Basics and Solar Design (Lab):

- 1. To determine resistance of a conductor using Ohm's Law.
- 2. To study V-I characteristics of PN junction diode.
- 3. To study the V-I & power curves of solar cells and find maximum power point & efficiency.
- 4. To design Photovoltaic Module using SIMULINK/MATLAB software.

Recommended readings:

- 1. Basic Electronics: A text manual, P. B. Zbar, A. P. Malvino, M. A. Miller, 1994, Mc-Graw Hill.
- 2. Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.
- 3. Beginning MATLAB and Simulink, Second Edition nOvenber 2022, Sulaymon Eshkabilov, Apress.