POST GRADUATE SYLLABUS

M.A./M.Sc. in
Mathematics

Under
Dibrugarh University
(As revised up to 19/01/2022)

As approved in the BoS meeting held on 19/01/2022

Courses with Credit					
Sem.	Core (Fixed)	Elective (minimum)		AEC (minimum)	Total
		DSE (Any One)	GE		
I	1. Abstract Algebra (4 Credit) 2. Differential Equations (4 Credit) 3. Real Analysis (4 Credit)	1. Tensor \& Classical Mechanics (4 Credit) 2. Combinatorics and Probability (4 Credit)	--	$\begin{gathered} 1 \text { Course } \times 2 \\ \text { Credit }=2 \end{gathered}$	18
II	1. Complex Analysis (4 Credit) 2. Linear Algebra (4 Credit) 3. Numerical Analysis (4 Credit)	1. Fluid Dynamics (4 Credit) 2. Fuzzy Set Theory (4 Credit) 3. Non-linear Dynamical System and Chaos (4 Credit) 4. Operations Research (4 Credit) 5. Topology (4 Credit)	Foundation in Mathematics (4 Credit)	--	20
III	1. Functional Analysis (4 Credit) 2. Graph Theory (4 Credit) 3. Numerical Partial Differential Equation (4 Credit)	1. Advanced Algebra (4 Credit) 2. Dempster-Shafer Theory of Evidence (4 Credit) 3. Magneto hydrodynamics (4 Credit) 4. Network Science (4 Credit)	Mathematical Modelling (4 Credit)	$\begin{gathered} 1 \text { Course } \times 2 \\ \text { Credit }=2 \end{gathered}$	22
IV	1. Mathematical Methods (4 Credit) 2. Mathematical Modelling (4 Credit) 3. Measure Theory (4 Credit) 4. Mathematics Teaching (4 Credit) OR Dissertation (4 Credit)	1. Algebraic Graph Theory (4 Credit) 2. Computational Fluid Dynamics (4 Credit) 3. Game Theory (4 Credit) 4. Mathematical Biology (4 Credit) 5. Wavelet Analysis (4 Credit)	--	--	20
Total Credit					80

Department of Mathematics				Dibrugarh University			
Title of the Course		Abstract Algebra			Paper Number		1C1
Category	CORE	Year	1	Credits	4	Course Code	MTHC1
		Semester	I				
Instructional Hours (Per week)		Lecture		Tutorial	4	Lab Practical	Total
		$\mathbf{3}$		1			4
Objectives of the Course		The students are expected to develop a strong foundation in Algebra with special emphasis on finite groups and algebraic number theory.					
Learning Outcome		After going through this course the students will be able to (i) Describe the Group theoretic notions of class equation and the related results. (ii) Discuss three important classes of Ring structures, viz., the Principal ideal Domain, Euclidean domain and the unique factorization domain.					
Course Outline		Unit I: Marks: 10 L $: \mathbf{8}, \mathbf{T}: \mathbf{2}$ A brief review of groups, their properties and examples, subgroups, isomorphism A brief review of groups, their properties and examples, subgroups, isomorphism theorems, symmetric, alternating and dihedral groups. Unit II: Marks: 15 L:11, T:4 Group action, The class equation of finite groups, Sylow theorems, Direct products of groups. Unit III: Marks: 15 L: 11, T: 4 A brief review of Rings, properties and examples. Ideals, Homomorphism and Quotient Rings, Field of quotients of an Integral Domain, Unique factorization domain, Principal Ideal Domain, Euclidean Domain. Unit IV: Marks: 20 L :15, T:5 Extension fields; The fundamental theorem of Field Theory, Splitting Fields, Zeros of an irreducible Polynomial. Classification of Finite Field, Structure of Finite Fields, Subfields of a Finite Field.					
Recommended Text		1. Herstein, I. N. (1975). Topics in Algebra Wiley. Eastern Limited. 2. Dummit, D. S., Foote, R. M. (2004). Abstract Algebra. Hoboken: Wiley.+ 3. Gallian, J. A.(2013). Contemporary Abstract Algebra, New Age International.					
Reference Books		1. Hungerford, T. W., Algebra. (1974). Springer-Verlag. New York. 2. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R. (1994). Basic Abstract Algebra. Cambridge University Press.					
Website and E-learning Source		www.algebra.com					

Department of Mathematic				Dibrugarh University			
Title of th	urse	Differential Equations			Paper Number		1C2
Category	core	Year	1	Credits	4	Course Code	MTHC2
		Semester	I				
Instructional Hours (Per week)		Lecture		Tutorial		Lab Practical	Total
		3 1					4
Prerequisites for the Course		Knowledge of ordinary differential equations of first order and second order and their General Solutions are essential. Knowledge of partial differential equations of first order is essential.					
Objectives of the Course		The students will learn the governing mathematical formulations and their solutions of various physical problems.					
Learning Outcome		After going through this course the students will be able to (i) Formulate the governing Mathematical equations of Physical Problems. (ii) Solve Differential Equations using various Mathematical tools.					
Course outline		Unit I: Ordinary Differential Equations: Marks 15, L: 11, T: 4 Series solutions of second order linear differential equations, Legendre equation and Legendre polynomials, Bessel equation and Bessel functions, Systems of first-order linear differential equations. Unit II: Partial Differential Equations of Second Order: Marks 15, L: 12, T: 4 Liner partial differential equations of second order with constant co-efficient, Characteristic curves of second-order equations, Reduction to canonical forms, Separation of variables, Solutions of nonlinear equations of the second order by Monge's method. Unit III: Laplace's Equation, Wave Equation, Diffusion Equation: Marks 15, L: 12, T: 4 The occurrence of Laplace's equation in Physics, Elementary solutions of Laplace's equation , Boundary value problems, Solution of Laplace's equation by separation of variables, The occurrence of the Wave equation in Physics, Elementary solutions of the one-dimensional Wave equation, Solution of the Wave equation by separation of variables The occurrence of the Diffusion equation in Physics, Elementary solutions of the Diffusion equation, Solution of the Diffusion equation by separation of variables. Unit IV: Methods of Green's Function: Marks 15, L: 10, T: 3 Green's Function, Green's function for the Laplace's equation, Green's function for the Wave equation, Green's function for the Diffusion equation.					
Recommended Text		1. Ross, S. L. (1984), Differential Equations, Wiley India. 2. Coddington, E. A. (2001), An Introduction to Ordinary Differential Equations, PHI. 3. Sneddon, I. N. (2006), Elements of Partial Differential Equations, Dover Publications, Inc. 4. Rao, K. S. (2010), Introduction to Partial Differential Equations, PHI Learning Pvt. Ltd..					
Reference Books		1. Boyce, W. E., DiPrima, R. C. (2009), Elementary Differential Equations and Boundary Value Problems, $9^{\text {th }}$ Edition, Wiley India 2. Piaggio, E. T. H. (1985), Differential Equations, CBS Publishers and Distributors 3. Bhamra, K. S. (2010), Partial Differential Equations, PHI Learning Pvt. Ltd. 4. Ayres, F (Jr.). (1972), Theory and Problems of Differential Equations, SI (Metric) Edition, Schaum's Outline Series, McGraw Hill Book Co.					
Website and E-learning Source		http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org					

Department of Mathematics				Dibrugarh University			
Title of the Course		Complex Analysis			Paper Number		2C1
Category	CORE	Year	1	Credits	4	Course Code	MTHC4
		Semester	II				
Instructional Hours (Per week)		Lecture		Tutorial	Lab Practical		Total
		$\mathbf{3}$ $\mathbf{1}$ It is expected that the students will be exposed					4
Objectives of the Course					It is expected that the students will be exposed to an advanced course in Complex Analysis.		
Learning Outcome		After going through this course, the students will be able to (i) Define various functions of Complex variables. (ii) Discuss the principles involved with Complex Integration. (iii) Obtain the conformal mappings of standard complex valued functions.					
Course Outline		Unit I : F Functions derivatives principles, logarithm, trigonome Unit II : Basic prop formula, theorem. Unit III: Convergen uniform co Unit IV : Residue at poles, Arg Jordan's le Unit V: C Linear Tr transforma preservatio harmonic	Com var man ntial xpon Co lex s, T ple s, C Pow Resi Res le, Pa ppi Lin $z ; m$ scal licat	variable: s, Mappi uations, A ctions, lo Trigono function gration, Ca Maximum riables: rgence of ries, Uniqu at the poin he's theore fractional ngs by z^{2} ctor, local		nential function ons, Harmonic ction, Branche ons, Hyperbol m, Morera's The ciple, Schewa series, Laurent representation. esidue Theorem, of Integrals, A mappings of of $z^{1 / 2}$, square monic conjugat	arks 12 L: 9 T: 3 imits, continuity, ctions, Reflection and derivatives of functions, Inverse arks $\mathbf{1 2}$ L: 9 T: 3 , Cauchy Integral emma, Liouville's Marks 12 L: 9 T: s, Absolute and arks 12 L: 9 T: 3 mber of zeros and cation of residues, arks 12 L: 9 T: 3 r half plane, The s of polynomials, transformation of
Recommended Text		1. Brown, J. W., Churchill, R. V. (2009). Complex variables and applications. Boston: McGrawHill Higher Education. 2. Ponnusamy, S. (2002). Foundations of functional analysis. CRC Press. 3. Apostol, T.M. (2008). Mathematical Analysis. Narosa Publishing House.					
Reference Books		1. Karunakaran, V. (2005). Complex analysis. Alpha Science Int'l Ltd. 2. Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education. 3. Hahn, L. S., Epstein, B. (1996). Classical complex analysis. Royal Society of Chemistry.					
Website and E-learning Source							

Department of Mathematics				Dibrugarh University	
Title of the Course	Linear Algebra		Paper Number		2C2
Category	Year	Credits	4	Course Code	MTHC5
	Semester				
Instructional Hours (Per week)	Lecture	Tutorial		actical	Total
	3	1			4
Objectives of the Course	To build up a foundation of Linear algebra				
Learning outcome	After going through this course, student will able to (i) Give theoretical treatment to solve system of linear equations. (ii) Discuss basic properties of inner products spaces and operators.				
Course Outline	Unit II: Linear maps: Marks 10 L: 8, T: 2 Linear transformation and Operator, matrix representations of linear transformations, the rank and nullity theorem, Invertibility Unit III: Eigenvalues and Eigenvectors: Marks 12 L: 9, T: 3 Eigenvalues and Eigenvectors, Invariant Subspaces, Polynomials applied to operators, Upper Triangular, Diagonal matrices Unit IV: Inner Product Spaces and Operators: Marks 14 L: 10, T:4 Inner products, norms, orthogonal bases, linear functional and adjoints, Self adjoint and normal operators, spectral theorem, Normal operators on Real Inner product spaces, Positive operators, Isometries. Unit V: Operators on Complex Vector Spaces: Marks 14 L:10, T:4 Generalized Eigenvectors, Characteristic Polynomial, Decomposition of an operator, minimal polynomial, Jordan form.				
Recommended Text	1. Dummit, D. S., Foote, R. M. (2004). Abstract algebra. Hoboken: Wiley. 2. Saikia, P. K. (2014). Linear Algebra. Pearson Education India. 3. Axler. S. (1997). Linear Algebra Done Right. Springer.				
Reference Books	1. Artin, M. (2015). Algebra. Pearson Ed. India. 2. Strang, G. (2005). Linear Algebra and its Applications. Cengage Learning. 3. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R. (1994). Basic abstract algebra. Cambridge University Press.				
Website and E-learning Source	MIT OCW 18.06SC: Linear Alg http://ocw.mit.edu/(Also availab	ra by Gilbe on Youtube			

Department of Mathematics				Department of Mathematics Dibrugarh University			
Title of the Course		Numerical Analysis			Paper Number		$\begin{aligned} & \hline 2 \mathrm{C} 3 \\ & \hline \text { MTHC6 } \\ & \hline \end{aligned}$
Category	CORE	Year	1	Credits	4	Course Code	
		Semester	II				
Instructional Hours (Per week)		Lecture		Tutorial	Lab Practical		Total
		To give a theoretical treatment to the nume					4
Objectives of the Course		To give a theoretical treatment to the numerical methods used to solve various problems of science and engineering					
Learning outcome		After completing this course learners will be able to (i) Use and analyze various numerical methods in solving scientific problem (ii) Discuss various issues in a numerical techniques such as convergence and stability (iii) Fit polynomial and exponential function to a given set of data					
Course Outline		Unit I: Floating point representation and Errors: Review of Taylor series, floating point representation, loss of significance Unit II: Solution of system of equations: Marks 15 L: 11, T: 4 Doolittle and Crout's Decomposition, Successive approximation by Gauss Jacobi, Gauss Seidal's Methods, Convergence of successive approximations. Unit III: Numerical Integration: Marks 15 L: 11, T: 4 General Newton's quadrature formula, Weddle's rule, Newton-Cotes formula, Gaussian quadrature Unit IV: Solution of Ordinary Differential Equations: Marks 15 L: 11, T: 4 Stability and Convergence of numerical methods, Runge-Kutta method of second, third and fourth order, General explicit method, Adam-Bashforth, General implicit method, AdamMoultan, Milne-Simpson method. Unit V: Curve Fitting: Marks 10 L: 8, T:2 General Least Square Method, Normal equations, Fitting of a polynomial (second and third degree), Fitting of exponential curves, Chebyshev polynomials.					
Recommended Text		1. Kincaid, D., Cheney, W. (2002). Numerical Analysis: Mathematics of Scientific Computing. AMS. 2. Atkinson, K., Han, W. (2003). Elementary Numerical Analysis, John Wiley \& Sons.					
Reference Books		1. Hilderbrand, F.B. (1987). Elementary Numerical Analysis. Dover publications. 2. Conte, S.D. (1980). Elementary Numerical Analysis: Algorithmic approach. Tata McGraw Hills 3. Madhumangal, P. (2009). Numerical Analysis for Scientist and Engineers. Narosa Pub. House. .					
Website a Source	E-learning	http://mathform.org.http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org.					

Department of Mathematics						Dibrugarh University	
Title of the Course		Functional Analysis			Paper Number		$\begin{array}{\|l\|} \hline \text { 3C1 } \\ \hline \text { MTHC7 } \\ \hline \end{array}$
Category	CORE	Year	2	Credits	4	Course Code	
		Semester	III				
Instructional Hours (Per week)		Lecture		Tutorial		Lab Practical	Total
		3 $\mathbf{1}$					4
Objectives of the Course		(i) To introduce a common mathematical framework for both algebraic and topological structures. (ii) To discuss generalization of classical analysis. To present some practical applicability of the theory developed.					
Learning outcome		After going through this course, the students will be able to (i) Describe the interaction of algebraic and topological properties. (ii) Deal with problems related to the fundamental theorems like Hanh-Banach theorem, Closed Graph theorem, Open Mapping theorem and Uniform Boundedness Principle besides developing a sound basis of Banach and Hilbert spaces. (iii) Apply the theoretical aspects in solving problems of linear equations, differential equations, integral equations and some issues in Quantum Mechanics.					
Pre-requisites		Basic knowledge of Linear Algebra and Metric Space.					
Course outline		Unit I: Normed and Banach spaces: Definitions, examples and basic properties of Normed spaces and Banach spaces. Subspace, Compactness and finite dimension, Definitions, examples and basic properties of Bounded linear operators and functionals, Dual space. Unit II: Fundamental theorems for Normed and Banach Spaces: Marks $15 \mathrm{~L}: 11, \mathrm{~T}: 4$ Open mapping theorem and its consequences, Closed graph theorem and its consequences, Uniform boundedness principal. Hanh-Banach Theorem and its consequences. Adjoint of bounded linear operator. Unit III: Hilbert Spaces: Marks $15 \mathrm{~L}: 11, \mathrm{~T}: 4$ Definitions, example and basic properties of inner-product spaces and Hilbert spaces, Orthogonal Complements and direct sums, Orthogonal sets and sequences, Series related to Orthonormal sequences and sets, Total orthonormal sets. Legendre, Hermite and Laguerre polynomials, Riesz's representation theorem. Hilbert -Adjoint operator, Self Adjoint operator. Unit IV: Some Applications: Marks $15 \mathrm{~L}: 11, \mathrm{~T}: 4$ Banach fixed point theorem and its applications to Linear Equations, Differential Equations and Integral Equations. Multiplication and Differential Operator in Quantum Mechanics.					
Recommended Texts		1. Kreyszig, E. (1978). Introductory functional analysis with applications. New York: Wiley. 2. Choudhary, B., Nanda, S. (1989). Functional analysis with applications. Wiley. 3. Limaye, B. V. (2014). Functional Analysis. New Age International P Ltd.					
Reference Books		1. Ponnusamy, S. (2002). Foundations of functional analysis. CRC Press. 2. Jain, P. K., Ahuja, O. P., Ahmed, K. (1995). Functional Analysis. New Age International (P) Limited.					
Website and E-learning Source		http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org					

Department of Mathematics						
Title of the Course	Graph Theory			Paper Number		3C2
Category	Year	2	Credits	4	Course Code	MTHC8
	Semester	III				
Instructional Hours (Per week)	Lecture		Tutorial		Lab Practical	Total
	3		1			4
Prerequisites for the Course	Basic concepts of enumeration are essential					
Objectives of the Course	Students will learn few interesting topics of Graph Theory as well as certain fascinating applications of various types of Graphs.					
Learning outcome	After going through this course the students will be able to identify various types of graphs and their properties.					
Course Outline	Unit I : Graphs and Trees: Marks 15, L: 12, T: 4 Graph, Basic definitions, Isomorphism of graphs, Subgraphs, Walks, Paths, Circuits, Connected graphs, Disconnected graphs, Trees, Some properties of trees, Distance and centers in a tree, Rooted and binary trees, On counting trees, Spanning trees, Cut-sets, Some properties of a cut-set, Connectivity and Separability, Blocks. Unit II : Operations On Graphs: Marks 15, L: 11, T: 4 Planar and non-planar graphs, Kuratowski's two graphs, Different representations of a planar graph, Matrix representation of graphs, Incidence matrix, Adjacency matrix, Graph matching, Graph coverings. Unit III : Directed Graphs and Enumeration of Graphs: Marks 15, L: 11, T: 4 Definition of Directed graphs (digraph), Some types of digraphs, Digraphs and binary relations, Directed paths and connectedness, Acyclic digraphs and decyclization, Enumeration of graphs, Types of enumeration, Counting labeled trees, Counting unlabelled trees. Unit IV : Graph Algorithms: Marks 15, L: 11, T: 3 Algorithms, Shortest-path algorithms, Transitive closure of a digraph, Activity network, Topological sorting, Critical path, Graphs in computer programming (basic concepts).					
Recommended Text	1. Deo, N. (2017). Graph theory with applications to engineering and computer science. Courier Dover Publications. 2. Harary, F. (2001). Graph Theory. Narosa Publishing House. 3. West, D. B. (2002). Introduction to Graph Theory. Prentice Hall India.					
Reference Books	1. Chartrand, G. (1984). Introductory Graph Theory. Dover Publications. 2. Bollobas, B. (1998). Modern Graph Theory. Springer. 3. Gross, J. L., Yellen, J. (2004). Handbook of Graph Theory. CRC Press. 4. Vasudev, C. (2006). Graph Theory with Applications. New Age Int. (P.). Ltd					
Website and E-learning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics					

Department of Mathematics				Dibrugarh University								
Title of the Course		Mathematical Methods			Paper Number		4C1					
Category	CORE	Year	2	Credits	4	Course Code	MTHC10					
		Semester	IV									
Instructional Hours (Per week)		Lecture		Tutorial	Lab Practical		Total					
		The objective of the course is to familiarize various essential procedure and tools which are frequently employed in analytical solution of problems arise in physical science. The technique of calculus of variations will be discussed for solving complex optimization problems in physical science, geometry and many other areas of interest in current trend										
Objectives of the Course												
Learning outcome		After going through this course the students will be able to (i) Describe various mathematical methods to solve integral equations. (ii) Solve wide range of problems in physical sciences using calculus of variation.										
Course Outline		Unit I : Integral Equations: Marks 20 L:14, T: 5 Definition of Integral Equation, Eigen values and Eigen functions: Reduction to a system of algebraic equations, Reduction of ordinary differential equations into integral equations. Fredholm integral equations with separable kernals, Method of successive approximations, Iterative scheme for Fredholm Integral equations of second kind, Conditions of Uniform convergence and uniqueness of series solution. Volterra Integral Equations of second kind, Resolvant kernel of Volterra equation and its results, Application of iterative scheme to Volterra integral equation of the second kind. Convolution type kernels. Unit II: Fourier Transform: Marks 12 L:9, T: 4 Fourier Integral Transform, Properties of Fourier Transform, Fourier sine and cosine transform, Application of Fourier transform to ordinary and partial differential equations of initial and boundary value problems. Evaluation of definite integrals. Unit III: Calculus of Variation with one independent variable: Marks 14 L: 11, T: 3 Basic ideas of calculus of variation, Euler's equation with fixed boundary of the functional $I[y(x)]=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x$ containing only the first order derivative of the only dependent variable with respect to one independent variable. Variational problems with functional having higher order derivatives of the only dependent variable, applications. Unit IV : Calculus of Variation with Several variables: Marks 14 L: 11, T: 3 Variational problems with functional dependent on functions of several independent variables having first order derivatives, Variational problems in parametric form, variational problems with subsidiary condition (simple case only), Isoperimetric problems, Applications.										
Recommended Text		1. Gupta, A. S. (1996). Calculus of variations with applications. PHI. 2. Parashar, B. P. (1994). Differential and Integral Equations. CBS Pub and Distributors. 3. Raisinghania, M. D. (2007). Integral equations and boundary value problems. S.Chand.										
Reference Books		1. Mikhlin, S. G. (1960). Linear integral equations (translated from Russian). Hindustan Book Agency. 2. Hildebrand, F. B. (2012). Methods of applied mathematics. Courier Corporation. 3. Spiegel, M. R. (1986). Theory and Problems of Laplace Transform. 4. Courant, R., Hilbert, D. (2008). Methods of Mathematical Physics: Partial Differential Equations. John Wiley \& Sons.										
Website and E-learning Source		http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics										

Department of Mathematics			Dibrugarh University		
Title of the Course	Mathematical Modelling		Paper Number		4C2
Category ${ }^{\text {Cor }}$	Year	Credits	-	Course Code	MTHC11
	Semester				
Instructional Hours (Per week)	Lecture	Tutorial	Lab Practical		Total
	3	1			4
Objectives of the Course	The objective of the course is to introduce the concept of representation of real world situations into Mathematical situations.				
Learning Outcome	After going through this course the students will be able to (i) Make Mathematical Models of real life problems (ii) Solve real word problems through Mathematical Modelling				
Course Outline	Unit I: Introduction: Marks 15 L: 12, T: 3 The technique on Mathematical Modelling, Mathematical Modelling through Calculus, Mathematical Modelling through ordinary differential equation of first order, Linear Growth and Decay model, Nonlinear Growth and Decay model, Mathematical Modelling in dynamics through ordinary differential equation of first order. Unit II: Mathematical Modelling through System of Differential Equations: Marks 15 L: 12, T: 3 Mathematical Modelling in population dynamics, Mathematical Modelling of Epidemics through system of differential equation of first order, Mathematical Modelling in Economics based on system of differential equation of first order, Mathematical Modelling in Medicine, Arms, Race Battles and International Trade in terms of ordinary differential equations. Unit III: Mathematical Modelling through Difference Equations: Marks 15 L: 12, T: 3 Need of Mathematical Modelling through Difference Equations, Mathematical Modelling through Difference Equations in Economics, Finance, Population dynamics and genetics. Unit IV: Mathematical Modelling through Graphs: Marks 15 L: 12, T: 3 Environment that can be modelled through Graphs, Mathematical Modelling in terms of Directed Graphs, Signed Graphs, weighted Diagraphs, Non-oriented Graphs.				
Recommended Text	1. Kapur, J. N. (1988). Mathematical Modelling. New Age International. 2. Barnes, B., Fulford, G. R. (2008). Mathematical Modelling with Case Studies, CRC Press.				
Reference Books	1. Bender, E. A. (2012). An introduction to mathematical modeling. Courier Corporation. 2. Meerschaert, M. M. (2013). Mathematical Modelling, Academic Press.				
Website and Elearning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics				

Department of Mathematics		Dibrugarh University			
Title of the Course	Measure Theory		Paper Number		
Category	Year 2	Credits	4	Course Code	MTHC12
	Semester				
Instructional Hours (Per week)	Lecture	Tutorial		Practical	Total
	3	1			4
Objectives of the Course	The learners will be exposed to the Lebesgue Theory of Integration as an extension of the standard Riemann Theory.				
Learning outcome	After going through this course, the students will be able to (i) Describe the properties of Measurable sets and functions. (ii) Integrate functions using Lebesgue Integration tools.				
Course Outline	Unit I :Measurable Sets: Outer measure, Lebesgue measure of measurable sets, non-measurab Unit II :Measurable Functions: Properties, Step functions, Chara measure zero, Borel measurable of simple functions, Convergence Unit III : Lebesgue Integrals: Riemann integrals, Lebesgue in Fatou's lemma, Monotonic Conv Dominated convergence theorem Unit IV: \mathbf{L}^{p}-Space: The L^{p} space, Holder, Minko Completeness of L^{p} space, Bound Unit V: Probability Measure: Measurable space, measure sp Probability, definition of Random of Probability distribution and classification of distributions, Exp	neasurable sets. istic functi tion, Realiz measure. ration of a ence Theor ki's inequa linear funct finite and ariable, M stribution ation as Le	heir le non- func rable mm $\mathrm{L}^{\mathrm{p}} \mathrm{sp}$ finit duce pro tegr	roperties, Borel nctions, Contin egative measur ion, Bounded functions, Gene ble sequence, aces. measures, Ax by a measurab erties of distr ls.	arks 12 L: 9, T: 3 , Characterization arks 12 L: 9, T: 3 sunctions, Set of functions in terms arks 12 L: 9, T: 3 vergence theorem, Lebesgue Integral, arks 12 L: 9, T: 3 ential supremum, arks 12 L: 9, T: 3 atic definition of function, definition ion function and
Recommended Text	1. Berra, G. D. (2014). Measure Theory and Integration. Wiley Eastern LTD. 2. Royden, H. L. (2002). Real Analysis. Mc-Millan 3. Feller, W. (1966). An Introduction to Probability Theory and its Applications.				
Reference Books	1. Rudin, W. (1998). Principles of Mathematical Analysis. McGraw Hill. 2. Jain, P K., Gupta, V. P., Jain, P. (2010). Lebesgue Measure and Integration. New Age International Publisher.				
Website and E-learning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics				

Department of Mathematic				Dibrugarh University		
Title of the Course	Mathematics Teaching			Paper Number		4D6
Category	Year	2	Credits	4	Course Code	MTHD18
	Semester	4				
Instructional Hours (Per week)	Lecture		Tutorial		Practical	Total
	3		2			5
Objectives of the Course	On completion of the course, the students will be able to 01 . Describe the nature of mathematics and also arithmetic, algebra, geometry and statistics. 02. Define and describe mathematical concepts, generalization and different types of proofs. 03. Appreciate the development of Mathematical understanding in the human civilization 04. State the aims and objectives of mathematics teaching in light of the NEP 2020. 05. Discuss and compare methods of Mathematics teaching. 06 . Use different techniques of assessment \& evaluation.					
Course Outline	Unit 1 : Mathematical Concepts Nature of Mathematics, arithmetic, algebra, geometry, and statistics; mathematical propositions, axioms and symbolism; Mathematical concepts and proofs, Historical developments of Mathematical understandings till $21^{\text {st }}$ century. Unit 2 : Aims and Objectives of teaching Mathematics Educational values of Mathematics; Aims and objectives of teaching Mathematics at different levels; Objectives of teaching Arithmetic, Algebra, Geometry and Statistics; Bloom's Taxonomy of Educational Objectives; Revision of Bloom's Taxonomy. Unit 3: Methods and Techniques of Teaching Mathematics Marks 15 Methods: Inductive - Deductive, Analytic - Synthetic, Problem Solving, Heuristic, Laboratory, Project, Flip classroom. Techniques: Oral, Online and Hybrid Techniques, Assignment, Supervised study, Programmed Learning. Unit 4 : Assessment and Evaluation Meaning of assessment and evaluation and their interrelationship, devices and techniques of assessment, planning, construction and implementation of assessment in Mathematics, Online assessments, Issues in Assessment and evaluation.					
Recommended Text	1. Baur Gregory R and Linder Olson George: Helping children Learn Mathematics. Cummings publishing Co. INC, London. 2. NCERT, A Textbook of Content-cum-Methodology of Teaching Mathematics, New Delhi: NCERT. 3. Ebel, R.L.: Measuring Educational Achievement ; Prentice Hall of India Pvt. Ltd, New Delhi.					
Reference Books	1. Sidhu, K.S.: The Teaching of Mathematics; Sterling Publishers Pvt. Ltd. New Delhi-16					
Website and E-learning Source	- https://www.nctm.org/publications/mathematics-teacher/ - https://academic.oup.com/teamat					

	symmetry properties. Unit-6: Hamiltonian Formulation Hamilton's canonical equation of motion, canonical variables, cyclic co-ordinates, Canonical transformations and generating functions., Introduction of Lagrangian bracket and Poissons's bracket and their properties and applications, Introduction to Hamilton-Jacobi theory and applications.
Recommended Text	1. 1. Young, E. C. (2017). Vector and tensor analysis. CRC Press. 2. Aris, R. (2012). Vectors, tensors and the basic equations of fluid mechanics. Courier Corporation.
Reference Books	3.H. Goldstein, Classical Mechanics, Addision Wesley Publishing Company, INC. USA. Lagrangian and Hamiltonian Mechanics by M.G. Calkin, World Scientific, Singapore. 1996 1. 1. Sharma, B. R. (2017). Tensor Analysis: A Primer. Mahaveer publications 2.Calkin, M. G., Lagrangian and Hamiltonian Mechanics, World Scientific, Singapore. 1996 3.Lebedev and Cloud, Tensor Analysis, World Scientific Publishing Co Pte Ltd 4.Gupta, kumar and Sharma, Classical Mechanics, Pragati Prakashan Website and E- learning Sourcehttp://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org,

Department of Mathematics					Dibrugarh University-		
Title of the Course		Combinatorics and Probability			Paper Number		1D2
Category	DSE	Year	1	Credits	4	Course Code	MTHD2
		Semester	I				
Instructional Hours (Per week)		Lecture		Tutorial	4	Lab Practical	Total
		3		1			4
Objectives of the Course		This course will introduce the theory of enumeration and probability.					
Learning Outcome		After going through this course, learners will be able to (i) Use techniques of enumeration in real life problems (ii) Model the real life situations using probability theory.					
Course Outline		UNIT I: Combinatorics: Marks: 25, L: 20, T: 5 Counting principles, multinomial theorem, set partitions and Stirling numbers of the second kind, permutations and Stirling numbers of the first kind, infinite matrices, inversion of sequences, probability generating functions, generating functions, evaluating sums, the exponential formula UNIT II: Probability: Marks: 20, L: 15, T: 5 Axiomatic definition of probability, probability spaces, probability measures on countable and uncountable spaces, conditional probability, independence; Random variables, distribution functions, probability mass and density functions, functions of random variables, standard univariate discrete and continuous distributions and their properties; Unit III: Moments and Joint Distribution Marks 15, L: 10, T: 5 Mathematical expectations, moments, moment generating functions, characteristic functions, inequalities; Random vectors, joint, marginal and conditional distributions, conditional expectations, independence, covariance, correlation, standard multivariate distributions					
Recommended Text		1. Stanley, R.P. (2011). Enumerative Combinatorics. Cambridge Univ Press. 2. Ross, S. M. (2002). A first course in probability. Pearson Education India. 3. Rohatgi, V. K., Saleh, A. K. Md. E. (2001). An Introduction to Probability and Statistics. Wiley.					
Reference Books		1. Berge, C. (1971). Principles of combinatorics. New York, 176. 2. Aigner, M. (2007). A course in Enumeration. Springer Science \& Business Media. 3. Ross, S. M. (2007). Introduction to Probability Models. Elsevier.					
Website and E-learningSource		http://mathforum.org , http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org					

Department of Mathematics				s Dibrugarh University		
Title of the Course	Fluid Dynamics			Paper Number		2D1
Category	Year	1	Credits	4	Course Code	MTHD4
	Semester	II				
Instructional Hours (Per week)	Lecture		Tutorial	Lab Practical		Total
	3		1			4
Objectives of the Course	The objective of this course is to introduce (iv) Fundamental aspects of fluid flow behaviours. (v) Dynamics of viscous fluid flows and governing equations of motion.					
Learning Outcome	After going through this course, students will be able to (iv) Describe stress-strain relationship of Newtonian fluids. (v) Derive some exact solutions of Navier-Stokes equations under different geometries.					
Course Outline	Unit I: Ki stream line various st mathemati rotational Unit II: T Thomson Stokes's str Unit III: and energy Poiseuille problem. Unit IV: boundary		\& Stress motion, types, sma ons, Reyn tions (stea i's equatio Inviscid Fl inks, doub rem, mot sphere, D- its Exact f change o y, exact s through wo-dimensi f boundary	rain , loc mati rans uns ws: age t a rt's ns: ation of flo	ysis: M d convective de eory, stress vec formula, cons , compressible M respect to pla lar cylinder, a ox. fusion of vortici er-Stokes equa rough annular	20, L: 15, T:5 es, path lines, stress tensor, on laws and ncompressible, 14, L: 10, T:4 circle, Milnemetric flows, 14, L: 11, T:3 ticity equation Couette flow, , Stokes first 12, L: 9, T: 3 sius equation, equation.
Recommended Text	2. Schlichting, H., Gersten, K. (2016). Boundary-layer theory. Springer. 3. Chorlton, F. (2004). Textbook of fluid dynamics. CBS Publisher.					
Reference Books	1. Spencer, A. J. M. (2004). Continuum Mechanics. Dover Publications. 2. Raisinghania, M. D. (2003). Fluid Dynamics. S. Chand Publications. 3. Lamb, S. R. (1945). Hydrodynamics. Dover Publications. 4. Ramsay, A. S. (1913). Hydrodynamics (A Treatise on Hydromechanics). G. Bell and Sons, ltd. 5. Kundu, P.K. Cohen, I. M., Dowling, D. R. (2011). Fluid Mechanics. Academic Press. 6. Thomson, L. M. M. (2011). Theoretical Hydrodynamics. Dover Publications					
Website and Elearning Source	https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unified-engineering-i-ii-iii-iv-fall-2005-spring-2006/fluid-mechanics/					

Department of Mathematics					Dibrugarh University		
Title of the Course		Fuzzy Set Theory			Paper Number		2D2
Category	DSE	Year	1	Credits	4	Course Code	MTHD5
		Semester	II				
Instructional Hours (Per week)		Lecture		Tutorial		tical	Total
				1			4
Objectives of the Course		The objective of the course is to introduce classifications and modelling of Uncertainty					
Learning Outcomes		After going through this course the students will be able to (i) Explain uncertainty using fuzzy set theory (ii) Gauge Uncertainty of fuzzy set (iii) Apply fuzzy set theory in different types real world problems under uncertainty					
Course Outline		Unit I: Basic of Fuzzy Sets: Marks: 12, L: 9, T: 3 Uncertainty, Taxonomy of Uncertainty, Motivation, Concepts of crispness and fuzziness, Fuzzy set and its representation, α-cut, convex fuzzy set, basic operations on fuzzy sets, types of fuzzy sets, extension principle, t-norm, t-conorms and their properties. Unit II: Fuzzy Arithmetic and Method of Construction of Membership Function: Marks: 12, L: 9, T: 3 Fuzzy Numbers Types of Fuzzy numbers, Interval Arithmetic, Arithmetic operations on fuzzy numbers, membership function formulation. Unit III: Fuzzy Relations: Marks: 12, L: 9, T: 3 Fuzzy relation, binary fuzzy relations, union and intersection of fuzzy relations, projection and cylindrical extensions, fuzzy equivalence relation, Fuzzy compatibility relations, Fuzzy ordering relations, compositions of fuzzy relations and their properties. Unit IV: Fuzzy logic and Fuzzy System: Marks: 12, L: 9, T: 3 Defuzzification, classic and fuzzy logic, approximate reasoning, linguistic hedges, fuzzy inference, fuzzy rule based system. Unit-V: Uncertainty measure and Applications of Fuzzy sets: Marks: 12, L: 9, T: 3 Uncertainty based information, non-specificity of fuzzy set, fuzziness of fuzzy sets, Applications of fuzzy sets in decision making and other real world problems.					
Recommended Text		1. Klir, G. J., Yuan, B. (1995). Fuzzy sets and Fuzzy logic: theory and applications. New Jersey: Prentice Hall PTR. 2. Zimmermann, H. J. (2011). Fuzzy set theory and its applications. Springer Science \& Business Media.					
Reference Books		1. Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley \& Sons. 2. Pedrycz, W., Gomide, F. (1998). An introduction to fuzzy sets: analysis and design. MIT Press.					
Website learning S	and Eurce	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.algebra.com					

Department of Mathematics							Dibrugarh University
Title of the Course		Nonlinear Dynamical Systems and Chaos				Paper Number	2D3
Category	DSE	Year	1	Credit	4	Course Code	MTHD6
		Semester	II				
Instruction Hours (Per week)		Lecture		Tutorial		Lab Practical	Total
		3		1			4
Objectives of the Course		The objective of this course is to introduce (i) Flow on a line and bifurcation in one dimensional flows (ii) Classification of linear and nonlinear system, limit cycles (iii) One dimensional maps, fractals and chaos					
Learning Outcome		After going through this course, students will be able to (i) Find the fixed points and their stability in nonlinear dynamical systems (ii) Apply the methods discussed in this topic to draw interpretations of a dynamical system modeled in terms of ordinary differential equations / difference equations without solving the problems exactly					
Course Outline		Unit II: Two Dimensional Flows and Bifurcations: Marks: 24, L:18, T: 6 Linear Systems: Definition, examples and classification of linear systems, Phase planes: Introduction, phase portraits, conservative systems, Reversible systems, Index theory, Limit cycles: Introduction and examples, Ruling out closed orbits, Liapunov Functions, Poincare-Bendixson, theorem, Lienard Systems, Relaxation Oscillators, Weakly non-linear oscillators, Saddle-node bifurcation, Transcritical bifurcation, Pitchfork bifurcation, Hopf bifurcation, Unit III: Chaos: Marks: 24, L:18, T: 6 Lorenz Equations: Introduction, Simple properties of the Lorenz equation, Definitions of chaos, attractors and strange attractors, One dimensional maps: Introduction, Fixed points and Cobwebs, Numeric and analysis of Logistic map, Renormalization, Fractals: Countable and uncountable sets, Cantor set and its fractal property, Dimensions of self similar fractals, Box Dimension, The von Koch curve, Strange attractors, The Baker's map B.					
Recommended Text		1. Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press. 2. Kaplan, D., Glass, L. (2012). Understanding nonlinear dynamics. Springer Science \& Business Media.					
Reference Books		1. Thompson, J. M. T., Thompson, M., Stewart, H. B. (2002). Nonlinear dynamics and chaos. John Wiley \& Sons. 2. Devaney, R., (2003) An Introduction to Chaotic dynamical systems., West-view Press.					
Website and E-learning Source		http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.algebra.com					

Department of Mathematics		Dibrugarh University			
Title of the Course	Topology		Paper Number		2D5
Category	Year	Credits	4	Course Code	MTHD8
	Semester				
Instructional Hours (Per week)	Lecture	Tutorial	Lab Practical		Total
	3	1			4
Objectives of the Course	To introduce the most general mathematical structure for discussing notions of analysis like convergence, continuity, compactness and connectedness. Notions like separation axioms, nets and filters will be introduced to emphasize that topological structures are more general than metric structures.				
Learning Outcome	After going through this course, students will be able to (i) Prove results of classical analysis in a more general setting (ii) Obtain relationship of continuity with connectedness, compactness and separation axioms				
Course Outline	Unit I: Basics Topology: Marks: 20, L :15, T: 5 Open Sets, Closed Sets, Neighbourhood, Limit Point, Interior, Closure, Basis, Sub-basis, finer and coarser topology, Subspace. Continuous Functions, Open Functions, Closed Functions, Homoemorphism, Composition of Continuous Functions, Pasting Lemma, Product Topology, Quotient Topology. Unit II: Compactness and Connectedness: Marks: 20, L :15, T: 5 Compact Space, Countable Compact Spaces, Linderloff Space, Local Compactness, Idea of Comapacttification, One point compactification, Stone Cech compactification, Connectedness, Path Connectedness, Local Connectedness. Unit III: Countability, Separation Axioms, Metrisation: Marks: 20, L: 15, T: 5 The countability axioms, the separation axioms, Normal spaces, The Urysohn Lemma, The Tietze Extension theorem. Uniformities and basic definitions, Metrisation, Urysohn Metrization Theorem				
Recommended Texts	1. Munkres, J. (2015). Topology, Pearson. 2. Joshi, K. D. (1983). Introduction to general topology. New Age International. 3. Simmons, G. F., Hammitt, J. K. (2017). Introduction to topology and modern analysis. New York: McGraw-Hill. 4. Murdeshwar, M.G. (1990). General topology. New Age.				
Reference Books	1. Lipschutz .S. Schaum's Outlines. New York: McGraw-Hill. 2. Kelley, J. L. (1975). General Topology. Springer.				
Website and E-learning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, httip://www.opensource.org				

Department of Mathematics				Dibrugarh University			
Title of the Course		Advanced Algebra			Paper Number		3D1
Category	DSE	Year	2	Credits	4	Course Code	MTHD9
		Semester	III				
Instructional Hours (Per week)		Lecture		Tutorial	Lab Practical		Total
		3					4
Objectives of the Course		To introduce to the students some advanced aspects of Abstract Algebra					
Learner Outcome		Students will be able to relate algebraic properties with geometric properties					
Course Outline		Unit -1 Solvable and Unit -2 Commutat rings and Unit-3 Field, Poly Characteri Unit 4 Galois The Fundamen Constructio	Grou d M over ensio rphis of	mal and S Chain co Field Ext te Extensio ps and fixe Polynom	al ns, A ope	Mark Mark and Primary Mark aic and Transce of Algebraic Ex Mark mental theorem y radicals, Ru	5, L: 10, T: 3 5, L: 11, T: 4 s, Noetherian 5, L: 12, T: 4 ntal elements, ons. 5, L: 12, T: 4 Galois Theory, and Compass
Recommen	d Text	1. Gallian, J. A. (2013). Contemporary Abstract Algebra, New Age International. 2. Hungerford, T. W. (1974). Algebra. Springer-Verlag. New York. 3. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R. (1994). Basic Abstract Algebra. Cambridge University Press.					
Reference Books		1. Herstein, I. N. (1975). Topics in Algebra Wiley. Eastern Limited. 2. Dummit, D. S., Foote, R. M. (2004). Abstract Algebra. Hoboken: Wiley.					
Website learning S	and E-	www.algebra.org					

Department of Mathematics				Dibrugarh University		
Title of the Course	Dempster-Shafer Theory of Evidence			Paper Number		3D2
Category ${ }^{\text {DSE }}$	Year	2	Credits	4	Course Code	MTHD10
	Semester	III				
Instructional Hours (Per week)	Lecture		Tutorial	Lab Practical		Total
	3		1			4
Objectives of the Course	The objective of the course is to introduce taxonomy, representation and modeling of Uncertainty					
Learning Outcome	After going through this course the students will be able to (i) Design and measure uncertainty using Dampster-Shafer theory (ii) Solve different types of real world problems under uncertainty					
Course Outline	Unit I: Dempster Shafer Theory: Marks: 15 L: 12, T: 4 Uncertainty, Types of Uncertainties, Sources and Nature of Uncertainty, Concept of Dempster-Shafer theory (DST), Basic Probability Assignment (BPA) and Its properties, Belief and Plausibility measure, Properties of Belief and Plausibility measures, Relation between Belief and Plausibility measures, Cumulative Belief and Plausibility measures, Focal Elements, Dempster-Shafer Structure (DSS), Necessity, Possibility measures and their Properties . Unit II: Combination of Evidence in DST and Arithmetic of DSSs: Marks: 15 L: 11, T: 4 Dempster's Rule of Combination of BPA, Yager's rule of combination, Inagaki's Rule of combination, Zhang's Rule of combination, Combination of Evidence with Different Weighting Factors, Other Modified rule of combinations, Arithmetic of DSSs. Unit III: Methods of Construction of BPA and Uncertainty Based Information: Marks: 15 L: 11, T: 4 Approaches to construct BPA, Uncertainty based information, Non-specificity, Entropy like measure, Strife, Fuzziness in DST, Probability-Possibility transformations. Unit IV: Applications of DST: Marks: 15 L: 11, T: 3 Applications of DST in decision making and other real world problems.					
Recommended Text	1. Shafer, G. (1976). A Mathematical Theory of Evidence, Priceton University Press. 2. Ayyub, B. M., Klir, G. J. (2006). Uncertainty modeling and analysis in engineering and the sciences. Chapman and Hall/CRC.					
Reference Books	1. Yager R. R., Liu, L. (2008). Classical works of the Dempster-Shafer theory of belief functions, Springer. 2. Yager, R., Kacprzyk J., Fedrizzi, M. (1994). Advances in the Dempster-Shafer theory of evidence. Wiley and Sons.					
Website and Elearning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.algebra.com					

Department of Mathematics				Dibrugarh University		
Title of the Course	Network Science			Paper Number		3D4 MTHD12
DSE	Year	2	Credits	4	Course Code	
	Semester	III				
Instructional Hours (Per week)	Lecture		Tutorial	Lab Practical		Total
	3		1			4
Prerequisites for the Course Objectives of the Course	Basic of Graph Theory is required.					
	Students will learn the application of graph Theory and games on networks					
Learning Outcome	After goin (i) (ii)		rners will etic tools he netwo	$\begin{aligned} & \text { e to } \\ & \text { vorks } \\ & \text { icall } \end{aligned}$		
Course Outline	Unit I: M Networks hypergraph Unit II: M Shortest p Homophily Unit III: Random networks: Unit IV: General stability, e	of N repres nd M distr rtativ Model iant cal, i Netw cussi work	weighted Power laws, nt, Small n, social wo assump	ork, ralit , S logi Str	Marks cted network, Marks eciprocity, Sim Marks: -free. Four B Marks: ic network for	L: 12, T: 4 tite network, L: 11, T: 3 y, L: 11, T: 4 Classes of L: 11, T: 4 on, pairwise
Recommended Text	1. Newman, 2. Baraba Press. (ww 3. Goel, S	$\begin{aligned} & (2018 \\ & 016) . \\ & \text { sciens } \\ & \text { onnec } \\ & \hline \end{aligned}$	orks: An I k Science, om) inceton Un	$\begin{aligned} & \text { ction } \\ & \text { ridg } \\ & \text { ty } \mathrm{Pr} \end{aligned}$	Oxford University niversity	
Reference Books	1. Newma Ltd; First 2. Jacksin, 3. Wassern	0). T 08). us, K	re and dyna d Economic Social Ne	of work Ana	orks. New Age Princeton Univer s. Cambridge U	national Pvt Press. sity Press.
Website and E-learning Source	http://www	cienc				

Department of Mathematics		Dibrugarh University				
Title of the Course	Algebraic Graph Theory			Paper Number		$\begin{array}{\|l\|} \hline \text { 4D1 } \\ \hline \text { MTHD13 } \\ \hline \end{array}$
Category ${ }^{\text {DSE }}$	Year	2	Credits	4	Course Code	
	Semester	IV				
Instructional Hours (Per week)	Lecture		Tutorial		ractical	Total
	3		1			4
Prerequisites for the Course	Basics of Graph Theory and Linear Algebra are required.					
Objectives of the Course	This course helps to understand and evaluate the algebraic aspects related to graphs					
Learning Outcome	After going through this course, students will be able to (i) Represent graphs using Matrics (ii) Evaluate and discuss various spectra related to graphs.					
Course Outline	Unit I: Re Basics of matrix and Unit II: Sp Eigenvalue the Eigenv Unit III: L Laplacian matrix and Unit IV: D Determina and spectru	y and matrix ag ks, E ular Spect Lap aplac t Ex ency	Algebra, es and Lab graphs. Eigenvalues, rix. coefficient	Rep of nu hara	Marks ntations of a gra Marks: hs, Lower and Marks: r, The Max-Cut Marks: stic polynomial	L: 7, T: 3 Adjacency L: 16, T: 4 r Bounds for : 16, T: 4 blem. Seidel L: 6, T: 4 rex partition
Recommended Text	1. Biggs, N. (1974). Algebraic Graph Theory. Cambridge University Press. 2. Wilson, R. J., Beineke, I. W. (2004). Topics in Algebraic Graph Theory. Cambridge University Press.					
Reference Books	1. Knauer, U. (2011). Algebraic Graph Theory. Hubert \& Co., Germany. 2. Godsil, C., Royle, G. (2001). Algebraic Graph Theory. Springer Verlag Newyork.					
Website and E-learning Source	http://www.graphtheory.com/					

Department of Mathematics				Dibrugarh University			
Title of the Course		Computational Fluid Dynamics			Paper Number		4D2
Category	DSE	Year	2	Credits	4	Course Code	MTHD14
		Semester	IV				
Instructional Hours (Per week)		Lecture		Tutorial	4	actical	Total
		2		1		1	4
Objectives of the Course		Introduction of various numerical techniques and tools to solve fluid flow problems and some practicals on it					
Learner Outcome		After going through this course students will be able to (i) Describe various numerical methods used in CFD (ii) Solve fluid flow problems using CFD techniques and tools					
Course Outline		Unit I: Basics of CFD and Discretization: Marks:15, L: 10, T: 4 CFD, governing equations of fluid dynamics, finite control volume, infinitesimal fluid element, substantial derivative, governing equations of fluid dynamics, boundary conditions, forms suitable for CFD, classifications of PDE, Discretization techniques, explicit and implicit approaches, errors and stability, general transformation equations, stretched grid, boundary fitted co-ordinate systems. Unit II: CFD Techniques: Marks:15, L: 10, T: 3 Lax-Wendroff and MacCormack's techniques, Relaxation technique, ADI technique, pressure correction technique. Unit III: Solutions using Numerical techniques: Marks:15, L: 10, T: 3 Numerical solution of Quasi-One Dimensional Nozzle Flows, Incompressible Couette flow: Numerical Solutions using Implicit Crank-Nicholson technique, Numerical Solution by solving Complete-Navier-Stokes equation. Section B: Practical: Marks: 15, L: 15, P:10 Development of code and execution in FORTRAN/C/C++ for various flow problems using Crank-Nicholson technique.					
Recommended Text		1. Anderson. J. D. (1995). Computational Fluid Dynamics the Basics with Applications. Mc-Graw Hill. 2. Chung, T. J. (2010). Computational fluid dynamics. Cambridge university press.					
Reference Books		1. Sengupta, T. K. (2004). Fundamentals of computational fluid dynamics. Hyderabad (India): University Press.					
Website learning S	and $E-$	http://web.engr.uky.edu/~acfd/me691-lctr-nts.pdf					

Department of Mathematics				Dibrugarh University			
Title of the Course		Game Theory			Paper Number		$\begin{array}{\|c\|} \hline \text { 4D3 } \\ \hline \text { MTHD15 } \\ \hline \end{array}$
Category	DSE	Year	2	Credits	4	Course Code	
		Semester	IV				
Instructional Hours (Per week)		Lecture		Tutorial	Lab Practical		Total
		3		1			4
Objectives of the Course		To build up a strong analytical foundation of Game Theory					
Learning Outcome		After going through this course the students will be able to (i) Model the rational behavior of agents engaged in conflicts. (ii) Distinguish between the cooperative and non-cooperative approaches of Games. (iii) Apply the models of Game Theory in socio-economic problems.					
Course Outline		Unit I: Game Theory Fundamentals: Marks: 12, L: 9, T:3 Historical background; Zero sum games; non-zero sum games; extensive form games; Cooperative games; Bargaining games; Cooperative versus non-cooperative games; Unit II: Two-person Zero-sum Games: Marks: 12, L: 9, T:3 Saddle point; Minimax and maximin strategies; Solving 2 xn and mx 2 games; Dominance; Mixed strategy; Linear Programing Methods to solve a two person zero sum game. Unit III: Two-person Non-Zero-sum Games: Marks: 12, L: 9, T:3 Basic Definitions; Nash equilibrium;Pure and mixed strategies in Nash equilibrium. Unit IV: Extensive Form Games: Marks: 12, L: 9, T:3 The Extensive Form; The Strategic Form; Backward induction and subgame perfection; Perfect Bayesian equilibrium. Unit V: Cooperative Game Theory: Marks: 12, L: 9, T:3 Cooperative Games with Transferable Utility; The Core; The Shapley value;					
Recommended Text		1. Narahari, Y. (2014). Game Theory and Mechanism Design. World Scientific. 2. Chakravarty, S.R., Mitra, M., Sarkar, P. (2015). A Course on Cooperative Game Theory. Cambrige University Press.					
Reference Books		1. Peter, H. (2008). Game Theory -A Multi-leveled Approach. Springer.					
Website and E-learning Source		http:/www.mathforum.org, http:/opensource.org					

Department of Mathematics			Dibrugarh University		
Title of the Course	Mathematical Biology		Paper Number		4D4
Category	Year	Credits	4	Course Code	MTHD16
	Semester				
Instructional Hours (Per week)	Lecture	Tutorial	Lab Practical		Total
	3	1			4
Objectives of the Course	To introduce certain mathematical tools like linear algebra, probability, Difference equations and Differential equations in modeling some aspects of Biological Systems.				
Learner Outcome	After going through this course, students will be able to (i) Relate mathematical notions with biological phenomena (ii) Solve simple biological problems using discussed models.				
Course Outline	Unit I : Modeling Population Dynamics : Marks: 15, L: 12, T:3 Dynamic modeling with difference equations; The Malthusian Model, Nonlinear Models, Analyzing Nonlnear Models, Variations on the Logistic Model, Comments on Discrete and Continuous Models. Linear Models of Structured Populations; Linear models and Matrix Algebra, Projection Matrices for Structured Models. Reproduction and the drive for survival ; The Darwinian Model of Evolution, Cells, replication of Living Systems, Population Growth and its Limitations, The Exponential Model for Growth and Decay. Age-Dependent Population Structures; Aging and Death, The Age -Structure of Populations, Predicting the Age -Structure of a Population. Unit II : Modeling Molecular Evolution: Marks: 15, L: 11 T:4 Background on DNA, An Introduction to Probability, Conditional Probabilities, Matrix Models for base substitution, Phylogenetic Distances, Phylogenetic Trees. Unit III Genetics: Marks: 15, L: 11, T:4 Asexual Cell Reproduction, Sexual Reproduction, Classical Genetics, A Final Look at Darwinian Evolution, The Hardy-Weinberg Principle, The Fixation of a Beneficial Mutation. Mendelian genetics, Probability distribution in Genetics, Linkage, Gene Frequency in populations. Unit IV Modeling Disease Spread: Marks: 15, L: 11, T: 4 Infectious Disease Modeling; Elementary Epidemic Models, Threshold Values and Critical Parameters, Variations on a Theme, Multiple Population and Differentiated Infectivity. A Mathematical Approach to HIV and AIDS ; Viruses, The Immune System, HIV and AIDS, An HIV Infection Model, A Model for a Mutating AIDS, Predicting the Onset of AIDS,				
Recommended Texts	1. Allman, E. A., Rhodes, J. A. (2004). Mathematical Models in Biology: An Introduction. Cambridge University Press. 2. Edward K. Y., Ronald W. S., James, V. H., (2011). An Introduction to the Mathematics of Biology: With Computer Algrbra Models. Springer.				
Reference Books	1. Barnes, B., Fulford, G. R. (2008). Mathematical Modelling with Case Studies, CRC Press. 2. Chou. C. S., Friedman, A. (2016). Introduction to Mathematical Biology. Springer. 3. Keshet, L.E. (1988). Mathematical Models in Biology, Random House New York.				
Website and E-learning Source					

Department of Mathematics			Dibrugarh University			
Title of the Course	Wavelet Analysis			Paper Number		4D5
Category ${ }^{\text {DSE }}$	Year	2	Credits	4	Course Code	MTHD17
	Semester	IV				
Instructional Hours (Per week)	Lecture		Tutorial	Lab Practical		Total
	3		1			4
Objectives of the Course	The objective of this course is to introduce (i) Advanced Fourier Analysis (ii) The Time-Frequency Analysis (iii) The Wavelet Transform (iv) Multiresolution Analysis.					
Learning Outcomes	After going through this course, students will be able to (i) Describe Audio Noising, (ii) Analyse Single Compression (iii) Develop models for Image Enhancement.					
Course Outline	Unit I: Advanced Fourier Analysis: Marks: 15, L: 12, T: 4 Introduction, The Fourier Transform in $L^{1}(R)$, Examples, Basic Properties of Fourier Transform, Convolution Theorem, The Fourier Transform in $L^{2}(R)$, Examples, Parseval's Identity, Inversion Formula, Plancheral's Theorem, The Uncertainty Principle, Heisenberg's Inequality Unit II: The Time-Frequency Analysis: Marks: 15, L: 11, T: 4 Introduction, The Time-Frequency Localization, The Continuous Gabor Transforms, Examples, Properties of Gabor Transform, Parseval's Formula, Inversion Formula, Conservation of Energy, Frames, Discrete Gabor Transform. Unit III: The Wavelet Transform: Marks: 15, L: 11, T: 3 Introduction, The Continuous Wavelet Transform and Examples, Basic Properties, Parseval's Formula, Inversion Formula, The Discrete Wavelet Transform, Conservation of Energy, Frames, Orthogonal Wavelets Unit IV: Multiresolution Analysis: Marks: 15, L: 11, T: 4 Introduction, Definition and its Consequences, Examples, Construction of Mother Wavelets with Examples, Basic Properties of Scaling Functions and Orthonormal Wavelet Bases, The Haar Multiresolution Analysis.					
Recommended Text Books	1. Debnath, L., Shah, F. A. (2015). Wavelet Transforms and their Applications, Birkhauser, Boston. 2. Chui, C. K. (1992). An Introduction to Wavelets. Academic Press, New York.					
Reference Books	1. Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.					
Website and E- learning Source	https://cseweb.ucsd.edu/-badeu/Doc/wavelets/polikar wavelets.pdf					

Department of Mathematics				Dibrugarh University			
Title of the Course		Foundation in Mathematics			Paper Number		$\begin{aligned} & \hline \text { 2G1 } \\ & \hline \text { MTHG1 } \\ & \hline \end{aligned}$
Category	GE	Year	1	Credits	4	Course Code	
		Semester	II				
Instructional Hours (Per week)		Lecture		Tutorial		Practical	Total
		3		1			4
Objectives of the Course		To build up a strong foundation of the basic Mathematical tools					
Learning Objectives		After going through this course the students will be able to (i) Identify the Mathematical objects to describe social and physical systems. (ii) Use the Mathematical tools to address context based problems					
Course Outline		$\begin{array}{lll}\text { Unit I: Sets and Logic: } & \text { Marks 15 L: 12, T: } \mathbf{3} \\ \text { Statements, Statements with quantifiers, compound statements, implications; Sets, Power sets, Cartesian }\end{array}$ product, countability of sets, functions and relations, graphs of functions. Unit II: Counting Principles: Marks 15 L: 11, T: 4 Sum and Product rule of counting, permutation and combination, multinomial theorem, Pigeon hole principle, inclusion-exclusion principle, set partitions, Catalan numbers. Unit III: Linear Algebra: Marks 15 L: 11, T: 4 Systems of Linear equations, Vector space, Linear Transformations, matrix and determinants. Unit IV: Finite Differences and Interpolation: Marks 15 L: 11, T: 4 Introduction, forward difference operator, Operators E \& D, backward differences, central differences, Newton' forward and backward interpolation formulae, Lagrange's interpolation formula.					
Recommended Text		1. Kumar, A., Kumaresan, S., Sarma, B.K. (2018). A Foundation Course in Mathematics, Narosa. 2. Kumaresan, S. (2006). Linear Algebra- A Geometric Approach, Prentice Hall India. 3. Rao, G. S. (2003). Numerical Analysis. New Age International Publishers. 4. Berge, C. (1971). Principles of combinatorics. New York, 176.					
Reference Books		1. Stewart, I., Tall, D. (2015). The Foundations of Mathematics. Oxford University Press. 2. Shastry, S. S. (2012). Introductory Methods of Numerical Analysis, Prentice Hall India Learning Private Limited.					
Website learning S	and urce	http:/www.mathforum.org, http:/opensource.org					

