SYLLABUS FOR

ONE YEAR DIPLOMA PROGRAMME

IN

OIL WELL DRILLING TECHNOLOGY (OWDT)

2023-24

DEPARTMENT OF PETROLEUM TECHNOLOGY FACULTY OF EARTH SCIENCES AND ENERGY DIBRUGARH UNIVERSITY

Programme Coordinators:

Dr. Dhrubajyoti Neog Dr. Borkha Mech

Programme Advisors:

Prof. Subrata Borgohain Gogoi Prof. Pradip Borgohain

Eligibility Criteria

Candidates seeking admission to the Diploma in Oil Well Drilling Technology should possess either of the following requisite qualifications:

- (a) B.Sc. degree in Physics, Chemistry, Geology and Mathematics.
 Candidates with B.Sc. degree in Physics, Chemistry and Geology must have cleared mathematics paper in their B.Sc. course.
- (b) Diploma in Petroleum, Mechanical, Chemical and Electrical engineering.
- (c) Candidates already employed in oil industries and having any of the above qualifications (a) & (b) may also apply through proper channel.
- (d) Sponsored candidates from oil industries for supernumerary seats.

Proposed date of implementation of the Programme: 1st Aug'23

CONTENTS

Content	Page Number
Course Structure	3-4
Course Content (1 st Semester)	5-10
Course Content (2 nd Semester)	10-14

1. COURSE STRUCTURE 1st Semester OWDT Course [Total Credits: 22, Total marks: 550]

Course Name	Те	aching Schen	ne (Hours)	Credits	Course	Marks	Total — Marks
	Theory	Tutorial	Practical		End Sem	In Sem	
		Core C	ourses				
Fundamentals of Petroleum Geology & Hydrocarbon Exploration	3	1	0	4	60	40	100
Drilling Rig Technology	3	1	0	4	60	40	100
Petroleum Reservoir Fundamentals	3	1	0	4	60	40	100
Fundamentals of Production Technology	3	1	0	4	60	40	100
Oil Well Technology	3	1	0	4	60	40	100
	Ab	ility Enhance	ement Courses	s (AEC)			
Drilling wellsite visit				2	30	20	50
	Fundamentals of Petroleum Geology & Hydrocarbon Exploration Drilling Rig Technology Petroleum Reservoir Fundamentals Fundamentals of Production Technology Oil Well Technology	Fundamentals of Petroleum Geology & Hydrocarbon Exploration3Drilling Rig Technology3Petroleum Reservoir Fundamentals3Fundamentals of Production Technology3Oil Well Technology3Ab	Image: stress of the stress	Image: constraint of the second strengthTheoryTutorialPracticalTheoryTutorialPracticalCore CoursesFundamentals of Petroleum Geology & Hydrocarbon Exploration310Drilling Rig Technology310Petroleum Reservoir Fundamentals310Fundamentals of Production Technology310Oil Well Technology310Ability Enhancement Courses	Image: Solution of Solutio	B Constraint of the	B Colspan="6">Colspan="6"TheoryTutorialPracticalEnd SemIn SemCore CoursesFundamentals of Petroleum Geology & Hydrocarbon Exploration31046040Drilling Rig Technology31046040Petroleum Reservoir Fundamentals31046040Fundamentals931046040Petroleum Reservoir Fundamentals31046040Oil Well Technology31046040Oil Well Technology31046040Drilling number courses (AEC)

CourseNo.	Course Name	Те	aching Sche	me (Hours)	Credits	Course	Marks	Total Marks	
		Theory	Tutorial	Practical		End Sem	In Sem		
	Core Courses								
OW-201	Drilling Operations	3	1	0	4	60	40	100	
OW-202	Health Safety & Environment	3	1	0	4	60	40	100	
OW-203	Workover Technology	2	1	2	4	60	40	100	
OW-204	Drilling Practical	0	0	8	4	60	40	100	
		Abi	lity Enhance	ement Course	es (AEC)				
OW-2A1	Industrial Training / Project Work/ Field work				4	60	40	100	

2nd Semester OWDT Programme [Total Credits: 20, Total marks: 500]

1. COURSE CONTENT

1.1. 1st **SEMESTER**

	Course Te	acher: D	Pr. Pradip	Borgohain	l			
Course No.	Course Name]	Feaching S (credi		Credits	_	ourse Iarks	Total Marks
		Theory	Tutorial	Practical		End Sem	In Sem	
OW- 101	Fundamentals of Petroleum Geology & Hydrocarbon Exploration	3	1	-	4	60	40	100
	Introduction: The movement and acceleration basics of petroleum fields in India	umulation	n of hydro	carbons with	hin the ea	arth's cru	ist. It also	o covers the
Course Content	 Petroleum Systerrock, source rock Basics of Igneo Concept on Geo Types of fold, f Petroleum exploration met Steps followed Distribution of followed 	k and ca us, Sedin ologic Tin ault & ur oration m hods. We during de	p rock. Re- nentary and me Scale & nconformit nethods: G ell progran	servoir traps d Metamorp & stratigraph y eological, G nme (GTO) t of oil & ga	s] ohic rocks nic units deophysic as fields.	al, Geoc	hemical ion of w	& Microbial ireline logs

Books Recommended:

- 1. Petroleum Geology by F. K. North, Publisher: Allen & Unwin
- 2. Petroleum (Indian context) by D. Chandra & R. M. Singh. Publisher: Tara Book Agency, Varanasi
- **3.** Principles of Sedimentology & Stratigraphy by Sam Bogs, Publisher: Pearson Education Ltd., London
- 4. Sandstone Reservoir by John H. Barwis, et.al. Publisher: Spinger–Verlag
- 5. Petroleum Exploration and Exploitation Practices by Bhagwan Sahay
- **6.** Theoretical Principles of Exploration and Development of Oil & Gas Accumulation by Bakirov, A. D

Suggested Books:

1. Working Guide to Drilling Equipment and Operations, William C. Lyons

- 2. Oilwell Drilling Engineering, H.L. Rabia
- 3. IADC Drilling Manual
- 4. Formulas and Calculating for Drilling, Production, and Workover, N.L. Lapeyrouse
- 5. Casing Design Theory and Practice, S.S. Rahman, G.V. Chilingarian.
- 6. Practical Well Planning and Drilling Manual, Steve Deveraux.

Course No.	Course Name	Teaching Scheme (Hours)			Credits	Course	Total Mark s	
		Theory	Tutorial	Practical		End Sem	In Sem	5
OW-102	Drilling Rig Technology	3	1	0	4	60	40	100
Course Content	drillin, Subsur 2. Drillin 3. Drill s weight 4. Drill b 5. Casing 6. Drillin pumpi 7. LOT, 6 8. Well H 9. Wire r	nd the pro be highlig uction to o g process, rface cond g equipme tring: com t on bit wit: classifi- g, types an- g process ng, hydrau CIT & PIT Head and F ope	cess involve hted in the il well drill process flor itions ent, Rig con ponents and cation, grad d functions, analysis: tri ilics & hole BOP fitting a	ed. Drilling course. ing: drilling w, oil well of ponents, an l its function ing of used component pping/reami cleaning.	fluid, a key terminolog drilling rigs ad rig instru- ns, concept bit. s and access ing practic	gy and al gy and al s, onshor umentation of neutr ssories. es, hoisti	bbreviatio obreviatio e/offshor al point a ng, rotati	illing a ons, e, nd on,

Suggested Books:

- 1. Working Guide to Drilling Equipment and Operations, William C. Lyons
- 2. Oilwell Drilling Engineering, H.L. Rabia
- 3. IADC Drilling Manual

- 4. Formulas and Calculating for Drilling, Production, and Workover, N.L. Lapeyrouse
- 5. Casing Design Theory and Practice, S.S. Rahman, G.V. Chilingarian.
- 6. Practical Well Planning and Drilling Manual, Steve Deveraux.
- 7. Composition and Properties of Drilling and Completion Fluids by H. C. H.

Corrego		Conta	act Hours		Ma	rks	
Course Code	Course Title	Theory	Tutorial	Credits	End Sem	In Sem	Total
OW-103	Petroleum Reservoir Fundamentals	3	1	4	60	40	100
Course Objective	The course aims to characteristics of properties, fundan mechanisms, reserv	petroleum resententals of flu	ervoirs includi id flow in	ng reserv a reservo	oir flu oir, res	uid and servoir	d rock
Course Content	 Introduction to I Properties of re Crude oil proper Properties of re Wettability; Sur Reservoir Heter Fluid flow equat Steady-state flor and slightly corr Reservoir drive effects on the per Classification and slightly corr 	servoir fluids a ties; Formation eservoir rocks: face forces and ogeneity. tions: Darcy's l w equations fo pressible fluid mechanisms: erformances of	and phase beh n water proper Porosity; Per d Capillary pre aw; Classificat r the flow of i s. Primary reco oil reservoirs.	ties. rmeability essure; Ro tion of reso ncompres	; Fluid ck Cor ervoir f sible, d chanisr	l satur mpress flow sy compre ms and	rations; ibility; vstems; essible, d their
Reference	es and Resources:		1				
 2. Re 3. Pe 4. Ap 5. Fu 6. PV 7. Ph 8. Eq 9. Pe 10. Es G.2 	ndamentals of Reserv servoir Engineering I troleum Reservoir En oplied Petroleum Rese ndamental Principles 'T and Phase Behavio ase Behavior of Petro uation of State and P trophysics – D.Tiab a sentials of Multiphas F.Pinder andW.G.Gra	Handbook – T. Igineering – J.V ervoir Engineer of Reservoir E or of Petroleum oleum Reservoi VT Analysis – and E.C.Donald e Flow and Tra	Ahmed V.Amyx, D.M ing – B.C.Cra ingineering – H Reservoir Flu r Fluids – K.S T.Ahmed Ison nsport in Poro	ft and M.H 3.F.Towle ids – A.D .Pedersen us Media	F. Haw r anesh and P.	kins	

ł

Course	Course	Teaching	g Scheme	(Hours)	Credits	Course	Marks	Total
No.	Name	Theory	Tutorial	Practical		End	In Sem	Marks
		5				Sem		
OW-104	Fundame	3	1	0	4	60	40	100
	ntals of							
	Producti							
	on							
	Technolo							
	gy							
	Introducti	-						
	connected			-			-	
	manner. Th	nese so-cal	led pores i	may contain	n a variety	of fluids	s such as	air, wate
	oil etc. If t	the pores i	represent a	a certain po	ortion of the	he bulk v	volume, a	comple
	network ca	n be form	ed which i	is able to c	arry fluids	. Only th	lese perm	eable a
	porous me	dia are tal	ken into c	onsideratio	n in this v	volume. 1	Fluid flov	w throug
	porous me	dia are tal dia is the v	ken into co way fluids	onsideration behave wh	n in this y en flowing	volume. l g through	Fluid flov a porous	w throug mediu
	porous me porous me for exampl	dia are tal dia is the v e in the u	ken into co way fluids nderground	onsideration behave wh d oil and ga	n in this v en flowing as reservoi	volume. l g through r rocks.	Fluid flow a porous As observ	w throug s medium ved, som
	porous mea porous mea for exampl fluid flows	dia are tal dia is the v e in the un through th	ken into co way fluids nderground ne media w	onsideration behave wh d oil and ga while some	n in this y en flowing as reservoi mass of th	volume. l g through ir rocks. e fluid is	Fluid flow a porous As observ stored in	w throug s medium ved, som the por
	porous mer porous mer for exampl fluid flows present in t	dia are tal dia is the v e in the un through th the media.	ken into co way fluids nderground ne media w The basic	onsideration behave wh d oil and ga while some law govern	n in this y en flowing as reservoi mass of th ning the flo	volume. l g through r rocks. e fluid is ow of flu	Fluid flow a porous As observed stored in ids throu	w throug s medium ved, som the por gh poro
	porous mer porous mer for exampl fluid flows present in t media is D	dia are tal dia is the v e in the un through th the media. arcy's Law	ken into co way fluids nderground ne media w The basic v, which w	onsideration behave wh d oil and ga while some law govern as formulat	n in this y en flowing as reservoir mass of th ning the flo ted by the	volume. I g through r rocks. e fluid is ow of flu French ci	Fluid flow a porous As observ stored in ids throu ivil engin	w throug s medium ved, sor the por gh poro eer Hen
	porous mer porous mer for exampl fluid flows present in t media is D Darcy in 18	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h	ken into co way fluids nderground ne media w The basic 7, which w is experim	onsideration behave wh d oil and ga while some law govern as formulat ents on ver	n in this y en flowing as reservoir mass of th ning the flo ted by the tical water	volume. 1 g through r rocks. e fluid is ow of flu French ci filtration	Fluid flow a porous As observed stored in ids through through s	w throug s medium ved, som the por gh poro eer Hen sand bec
	porous mer porous mer for exampl fluid flows present in t media is D Darcy in 18 1. Intr	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h roduction:	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p	n in this y en flowing as reservoir mass of th ning the flo ted by the tical water	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf	Fluid flow a porous As observ stored in ids through through s luence in	w throug s mediun ved, som the por gh poro eer Hen sand bec
	porous mea porous mea for exampl fluid flows present in t media is D Darcy in 18 1. Intr char	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h roduction: racteristics	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow , influence	onsideration behave wh d oil and gav hile some law govern as formulat ents on ver w through p of fluid ch	n in this y en flowing as reservoir mass of the ning the flucted by the tical water porous men aracteristic	volume. 1 g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur	Fluid flow a porous As observ- stored in ids through through fluence in re mechar	w throug s medium ved, som the por gh poro eer Hen sand bec reserve isms.
	porous mea porous mea for exampl fluid flows present in t media is D Darcy in 18 1. Intr char	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h roduction: racteristics	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow , influence	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p	n in this y en flowing as reservoir mass of the ning the flucted by the tical water porous men aracteristic	volume. 1 g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur	Fluid flow a porous As observing stored in ids through through fluence in re mechar	w throug s medium ved, som the por gh poro eer Hen sand bec reserve isms.
	porous met porous met for exampl fluid flows present in t media is D Darcy in 18 1. Intr chan 2. Sing	dia are tal dia is the v e in the un through the media. arcy's Law 356 since h roduction: cacteristics gle-phase	ken into co way fluids nderground ne media w The basic 7, which w is experim Fluid flow , influence flow in po	onsideration behave wh d oil and gav hile some law govern as formulat ents on ver w through p of fluid ch	n in this ween flowing as reservoir mass of the ning the flowing the d by the tical water porous men aracteristic ia: flow po	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i	Fluid flow a porous As observing stored in ids through through s luence in re mechar	w throug s medium ved, som the por gh poro eer Hen sand bed reserve hisms.
	porous met porous met for exampl fluid flows present in t media is D Darcy in 18 1. Intr char 2. Sing com	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow , influence flow in po flow in po	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch prous medi	n in this y en flowing as reservoir mass of the ning the flow tical water porous men aracteristic ia: flow por a, Darcy's	volume. I g through ir rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and	Fluid flow a porous As observed in ids through ivil engine through s fluence in re mechar incomprese non-Darce	w throug s medium ved, som the por gh poro eer Hen sand bec reserve hisms. ssible an cy effect
	porous mea porous mea for exampl fluid flows present in t media is D Darcy in 18 1. Intr char 2. Sing com	dia are tal dia is the v e in the un through th the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow , influence flow in po flow in po	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch prous media	n in this y en flowing as reservoir mass of the ning the flow tical water porous men aracteristic ia: flow por a, Darcy's	volume. I g through ir rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and	Fluid flow a porous As observed in ids through ivil engine through s fluence in re mechar incomprese non-Darce	w throug s medium ved, som the poro gh poro eer Hen sand bec reserve nisms. ssible an cy effec
	porous mea porous mea for exampl fluid flows present in t media is D Darcy in 18 1. Intr chan 2. Sing com mas med	dia are tal dia is the v e in the un through the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible s, determi lia flow.	ken into co way fluids nderground ne media w The basic 7, which w is experim Fluid flow , influence flow in po flow in po nation of t	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch prous media the paramet	n in this ween flowing as reservoir mass of the ning the flowing tical water porous men aracteristic ia: flow poor ters and vier	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di	Fluid flow a porous As observ- stored in ids through through s luence in re mechar incompre- non-Darc ssipation	w throug s medium ved, som the por gh poro eer Hen sand becon reserved hisms. ssible an cy effec in poro
	porous mea porous mea for exampl fluid flows present in to media is D Darcy in 18 1. Intr char 2. Sing com mas med 3. Mu	dia are tal dia is the w e in the un through the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible s, determi lia flow. Iti-phase f	ken into co way fluids nderground ne media w The basic v, which w is experim Fluid flow , influence flow in po flow in po nation of t	onsideration behave while d oil and gather while some law govern as formulate ents on ver w through period of fluid chorous media the parameter orous media	n in this y en flowing as reservoir mass of the ning the flowing tical water porous mer aracteristic ia: flow por a, Darcy's ters and vie	volume. I g through ir rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di lity, capi	Fluid flow a porous As observ- stored in ids through through s fluence in re mechar incompre- non-Darc ssipation	w throug s medium ved, som the por gh poro eer Hen sand bec reserven isms. ssible an cy effect in poro
	porous mea porous mea for exampl fluid flows present in to media is D Darcy in 18 1. Intr char 2. Sing com mas med 3. Mul relat	dia are tal dia is the v e in the un through the media. arcy's Law 356 since h roduction: racteristics gle-phase pressible s, determi lia flow. Iti-phase f tive perme	ken into co way fluids nderground ne media w The basic y, which w is experim Fluid flow , influence flow in po nation of t	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch orous media the parameter their measure	n in this we en flowing as reservoir mass of the ning the flucted by the tical water porous me aracteristic ia: flow por h, Darcy's ters and vir a: wettabil surements	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di lity, capi and data	Fluid flow a porous As observ- stored in ids through ivil engin through s fluence in re mechar incompre- non-Darc ssipation llary pres- interpreta	w throug s medium ved, som the por gh poro eer Hen sand bed reserven isms. ssible an cy effect in poro ssure, an tion.
Course Content	porous mea porous mea for exampl fluid flows present in t media is D Darcy in 18 1. Intr char 2. Sing com mas med 3. Mul relat 4. Inje	dia are tal dia is the v e in the un through the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible s, determi lia flow. Iti-phase f tive perme ection well	ken into co way fluids nderground ne media w The basic 7, which w is experim Fluid flow , influence flow in po nation of t flow in po ability and	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch orous media the paramet rous media the in meas Central and	n in this we en flowing as reservoir mass of the ning the flow ted by the tical water porous me aracteristic aracteristic ia: flow po a, Darcy's ters and vi a: wettabis surements a d periphera	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di lity, capi and data	Fluid flow a porous As observing stored in ids through ivil enging through s fluence in re mechar incomprese non-Darce ssipation llary prese interpreta g, pattern	w throug s medium ved, som the por gh poro eer Hen sand bed reserved isms. ssible an cy effect in poro ssure, an tion.
	porous mea porous mea for exampl fluid flows present in to media is D Darcy in 18 1. Intr char 2. Sing com mas med 3. Mul relat 4. Inje	dia are tal dia is the v e in the un through th he media. arcy's Law 356 since h roduction: acteristics gle-phase s, determi lia flow. Iti-phase f tive perme ection well al sweep	ken into co way fluids nderground ne media w The basic 7, which w is experim Fluid flow , influence flow in po flow in po nation of t flow in po ability and location: Efficiency	onsideration behave wh d oil and ga while some law govern as formulat ents on ver w through p of fluid ch orous media the parameter their measure	n in this we en flowing as reservoir mass of the ning the flow ted by the tical water porous me aracteristic aracteristic ia: flow po a, Darcy's ters and vi a: wettabis surements a d periphera	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di lity, capi and data	Fluid flow a porous As observing stored in ids through ivil enging through s fluence in re mechar incomprese non-Darce ssipation llary prese interpreta g, pattern	w throug s medium ved, som the por gh poro eer Hen sand becon reserved in sms. ssible an cy effect in poro ssure, an tion.
	porous mea porous mea for exampl fluid flows present in to media is D Darcy in 18 1. Intr char 2. Sing com mas med 3. Mul relat 4. Inje 5. Are mot	dia are tal dia is the v e in the un through the media. arcy's Law 356 since h roduction: cacteristics gle-phase pressible s, determi lia flow. Iti-phase f tive perme ection well	ken into co way fluids nderground ne media w The basic y, which w is experim Fluid flow , influence flow in po nation of t flow in po nation of t flow in po ability and location: Efficiency	onsideration behave while d oil and gave hile some law govern as formulate ents on ver w through period of fluid chorous media the parameter orous media the parameter l their meass Central and for patter	n in this we en flowing as reservoir mass of the ning the flucted by the tical water porous mean aracteristic ia: flow point, Darcy's ters and vi- ta: wettability purements a d periphera rn flood: we	volume. I g through r rocks. e fluid is ow of flu French ci filtration dium, inf cs, captur otential, i law and iscous di lity, capi and data al floodin unit mob	Fluid flow a porous As observ- stored in ids through ivil engin through s fluence in re mechar incompre- non-Darc ssipation llary pres- interpreta g, pattern ility ratio	w throug s medium ved, som the por gh poro eer Hen sand bed reserved isms. ssible an cy effect in poro ssure, an tion.

Text:

1.Civan, F.A, Porous Media Transport Phenomena, Wiley, 2011. 2. Dullien, F.A.L,Porous Media 2nd Edition

- 2. Fluid Transport and Pore Structure, Elsevier, 1991.
- 3. Latil, M.:"Enhanced Oil Recovery," Techniq, 1980.

Reference:

- 1. Bear, J., Dynamics of Fluids in Porous Media, Dover, 1989
- Gogoi SB, "Petroleum Technology Enhanced Oil Recovery Techniques", pub. Oxford & IBH, 2014.
- 3. Craft, B.C. and Hawkins, M.F. "Applied Petroleum Reservoir Engineering", Prentice Hall, November 1964.
- 4. Roger J M De Wiest and Jacob Bear, "Flow through porous media", New York.

		Course T	'eacher: D	r Dhrubaj	jyoti Neog	3		
Course	Course	Teachin	g Scheme	(Hours)	Credits	Cours	e Marks	Total
No.	Name	Theory	Tutorial	Practical		End	In	Mark
						Sem	Sem	S
OW-105	Oil Well Technology	3	1	0	4	60	40	100
Course Content	 Oil Rece Well Co Well co tools, w Well Ao Displace Swabbin Well sti thermal Artificia Gas lift- valve co 	he multip ce reserve the functi ction chal ction to (recovery, Recompletion, ompletion, ellhead ec ctivation f ement, Co ng, Coiled mulation, stimulation, stimulation omponent	licity of p oirs. On c ons of oil lenges. Dil Recove , Secondar covery fac Design: types of uipment, p methods: Tubing ui Techniqu well acidi on, surfacta thods: ous and int	ery method completion well operat ery method cy recovery tor well comp multi-zone application nit, Use of	volved in of the co ions and c Is: , Improve bletion, D completion , Applicat artificial li nent, hydr nt, Microb as lift, unl unger lift	the ext purse, le develop d Oil Ro own-ho on tion of N ifts aulic for oial treat oading o , chamb	raction o earners w an unders ecovery, l le comple Nitrogen, rmation f ment operations	f crude oil ill acquire standing of Enhanced etion and Aeration, racturing, s, gas lift fechanical

Books Recommended:

- 1. Introduction to Petroleum Production Vol. I & II by D.R. Skinner
- 2. Principles of Oil Well Production by T.E.W. Nind
- 3. Production Operations Vol. I & II by Thomas & Roberts
- 4. Petroleum Engineering by Archer & C.G. Wall
- 5. Petroleum Engineering by Carl Gatlin
- 6. Applied Petroleum Reservoir Engineering by Crafts & Hawkins
- 7. Fundamentals of Reservoir Engineering by L.P Drake
- 8. Integrated Petroleum reservoir Management by Abdus Sattar and Ganesh C. Thakur
- 9. Technical manual for Production Operations by R.K. Mukherjee. Institute of Oil & Gas Production Technology, ONGC Ltd., Panvel
- 10. Well completion and Servicing, Oil & gas Field Development Techniques, Editions Technip, D. Perrin
- 11. Enhanced Oil Recovery, Don W Green, G. Paul Willhite, SPE Textbook Series Vol6.
- 12. Waterflooding, G. Paul Willhite, SPE Textbook Series, Vol. 3

- 13. Petroleum Production Handbook, Vol. I, Thomas C. Frick, Editor-in-Chief, R. William Taylor, Associate Editor, Journal of Petroleum Technology
- 14. Thermal Methods of Oil Recovery, J. Burger P. Sourieau, M. Combarnous, Editions Technip
- 15. Petroleum Exploration & Exploitation Practices, Dr. Bhagwan Sahay
- 16. Gas Lift Manual, Gabor Takacs, Ph.D. Petroleum Engineering Department, University of Miskolc, Hungary
- 17. Modern Petroleum Technology, Volume I, Upstream, Edited by Richard A. Dawe, 6th Edition

		AEC	(Inter-De	partmental)			
Course	Course Name	Teaching	g Scheme	(Hours)	Credits	Cours	se	Total
No.						Mark	S	Marks
		Theory	Tutorial	Practical		End	In	
		-				Sem	Sem	
OW-1A1	Industrial visit				2	30	20	50
The studen	ts will undergo Ind	ustrial visi	it in oil ind	lustries				

1.2. 2nd SEMESTER

		Course 7		Dr Borkha Dr. Ranjar				
Cours	Course	Teachin	g Scheme	Ŷ	Credits	Cours	e Marks	Total
eNo.	Name	Theory Tutorial Practical			End	In	Marks	
						Sem	Sem	
OW- 201	Drilling Operations	3	1	0	4	60	40	100
Course Contents	and m 2. Ceme 3. Direc drillin techn 4. Drillin Reme string	ools and n oil well. I gy that car ng optimiz nethods, cu enting oper tional drill ng, multila iques ng compli	nethods the t provides t be applied vation: dev uttings trans rations, equiling, applied teral drilling cations, for reventive t	hat are con an introduc d for proble iation contra sport, torqu uipment and cations, stee ng, extende rmation pro measures, p	ductive for ction to the em-free dr rol, well pa ue and dra d design o ering tools d reach dr oblems, stu practices to	or fast a basic n illing. ath analy g, rig hy f a ceme and BH illing, si nck pipe avoid I	ysis, surv draulics. ent job IA. Horiz de-tracki , fishing. Drill	effective concepts ey tools

Books Recommended:

- 1. Horizontal and Directional Drilling, Richard S. Carden, Robert D. Grace.
- 2. Well Engineering and Construction, H.L. Rabia
- 3. Drilling Engineering, J.J. Azar
- 4. Applied Drilling Engineering, A.T. Bourgoyne, K.K. Millheim, M.E. Chenevert.
- 5. Practical Well Planning and Drilling Manual, Steve Deveraux
- 6. Formulas and Calculating for Drilling, Production and Workover, N.L. Lapeyrouse
- 7. Measurement while drilling (MWD), losing-while-drilling and geosteering I. Do Well and A.A. Mells.
- 8. Mud Logging: Principles & Interpretations Alum Whittaker.

Course No.Teaching Scheme (Hours) TheoryCreditsCourse Marks End SemTotal MarksOW-202Health, Safety & Environm ent (HSE)30036040100Introduction:HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry.1. Introduction2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detectio system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill an oil spill control. Waste treatment methods.		Cou	irse Teacl	her: Dr (N	Irs) Subra	ta Borgoh	ain Gogo	Di	
OW-202 Health, Safety & Environm ent (HSE) 3 0 0 3 60 40 100 Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and	Course	Course	Teachin	g Scheme	(Hours)	Credits	Course	Marks	Total
OW-202 Health, Safety & Environm ent (HSE) 3 0 0 3 60 40 100 Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detectio system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and	No.	Name	Theory	Tutorial	Practical		End		Marks
Safety & Environm ent (HSE) Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and spilland.							Sem		
Environm ent (HSE) Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill an	OW-202		3	0	0	3	60	40	100
ent (HSE) Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and studies.									
Introduction: HSE is one of the vital constituents of Upstream oil industry activities because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detectio system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and source of the system.									
 because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and studies. 		ent (HSE)							
 because most of the operational conditions, chemicals and end products (hydrocarbo and other compounds) associated with Oil and Gas production are well-known to po serious safety and health threats to the workers. The latest focus on upstream oil industry is on how to manage all kinds of risk in order to rein in costs. This task is more daunting than ever before for this industry. 1. Introduction 2. Health hazards in Drilling: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and studies. 									
 skin effect of petroleum hydrocarbons, sour gases. 3. Safety: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and studies. 		more dauntir	ng than eve	er before fo	r this indust	ry.			
 system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. 4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and the system of the system. 							1 0		2
4. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill an		system. Fire	e detection	and suppre	ession system	ns. Person	al protecti	ion systen	n &
The impact of drilling & production operations on the environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill an									
transport of petroleum wastes. Offshore environmental studies. Offshore oil spill an									
oil spill control. Waste treatment methods.		transport of	petroleum	wastes. Of	ffshore envi				
		oil spill con	trol. Waste	e treatment	methods.				

Books Recommended:

- 1. Process Safety in Upstream Oil and Gas 1st Edition, Publisher Wiley- AICHE, 2021
- 2. Online HSE Manual, https://pdfgoal.com/downloads/hse_manual_for_oil_and_gas_suppliers
- 3. Risk Management in the Oil and Gas Industry, publisher MIT Energy Initiative by Nancy Leveson, 2011.

No.					Creans	Course Marks			
	CourseTeaching Scheme (Hours)CreditsCourseNameTheoryTutorialPracticalEnd					In	Marks		
		-				Sem	Sem		
OW-203	Workover Technology	2	1	2	4	60	40	100	
-	Introduction equipment, operations. C hands-on trai	workover On comple	fluids, a tion of the	nd differen e course, le	nt types	of oil v	well inte	rvention	
Course Content	completing of perforat 2. Workover, Workover,	g a new zo ion, perfo operatio need for vork string	ne/reservo ration guns ns & equi workover g, casing s		ing in mult	tiple rese er procee	dure, we	chnique ll killing	
	3. Workover	fluids:	1 0						
				ls-Types, p			4	a 4a al-	
	4. Well Inter 5. Flow assu		wireline a	na ns opera	ations, wir	enne uni	ii, wirellin	e 10015	
	Scales, Hydrate, Paraffin chemistry- methods of removal, preventing								
	deposition and its control								
	6. Practical								
			uid formula						
	• Re • Int	servoir flu	id analysis	5					

Books Recommended:

1. Technical manual for Production Operations by R.K. Mukherjee. Institute of Oil & Gas Production Technology, ONGC Ltd., Panvel

2. Well completion and Servicing, Oil & gas Field Development Techniques, Editions Technip,

D. Perrin

3. Modern Petroleum Technology, Volume I, Upstream, Edited by Richard A. Dawe, 6th Edition

4. Production Operation Vol. I, II by Thomas & Roberts

5. Petroleum Production Handbook, Vol. I, Thomas C. Frick, Editor-in-Chief, R. William Taylor, Associate Editor, Journal of Petroleum Technology

6. Petroleum Exploration & Exploitation Practices, Dr. Bhagwan Sahay

7. Petroleum Production Engineering, 2nd Edition, by Xuehao Tan, Xinghui Liu, Boyun Guo, ISBN: 9780128096123

8. Waterflooding, G Paul Willhite, SPE Textbook Series, Vol.3

9. ONGC Manual

Ability Enhancement Course												
Cour	Course Name	Teachin	g Scheme	Credits	Course		Total					
se		Marks					S	Marks				
No.		Theory	Tutorial	Practical		End	In					
		_				Sem	Sem					
OW-	Industrial				4	60	40	100				
2A1	Training											
	C											
The students will undergo a minimum of one month training program in nearby oil industries.												

	Course Teacher: Dr (Mrs) Subrata Borgohain Gogoi														
	Dr. Pradip Borgohain Dr. Barian Bhukar														
	Dr. Ranjan Phukan Dr. Dhrubajyoti Neog														
	Dr. Borkha Mech														
Course	Course				Credits	Course	Total								
No.	Name	Theory	Tutorial	Practical		End	In Sem	Marks							
						Sem									
OW-204	0	0	0	8	4	60	40	100							
	Practical														
	Introducti	on: This a	course will	familiariz	e the learr	ers with	how to e	evaluate a							
	Introduction: This course will familiarize the learners with how to evaluate formation for crude oil production, how to analyze drilling fluids, well fluids, and														
	workover fluids, and develop an understanding of the downhole condition of the														
	oil wells and how to carry out drilling and workover operations.														
		g Simulati													
Course	2. Designing Drilling & Workover rigs														
Content	 Drilling fluid practical Formation evaluation 														
	5. Crude Oil characterization														
	6. Reservoir fluids analyses														
	7. Reserv	oir rock an	alyses												