Review article

A REVIEW ON: ITCH-CAUSING AND ITCH-RELIEVING PLANTS

Soyarmi T. Shimray*, Hemanta K. Sharma

Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India

Abstract

Background: Recent Years have seen an increase in the number of allergic patients worldwide. Statistics from across the world have proven a high risk for skin diseases associated with plant contact. Therefore, plant-induced allergies are of increasing attention in medicine. However, there are relatively little data available in the scientific literature concerning the common adverse effects of plants like itching. Thus, an exhaustive list of allergenic plants is essential for risk avoidance and the diagnosis of allergy reactions. **Objectives:** The objective of this review is to collect plant species that causes itching as well as that relief itching and to study their different phytoconstituents present in those plant species available in the literature. Methods: Extensive literature survey was carried out through various databases like Google Scholar, PubMed, scopus etc. and the information were collected and analyzed, and compiled according to the ethnobotanical, phytochemical and pharmacological indications of plants. Results and Discussion: From the literature survey that was carried out, the information's are categorized as (a) Plants causing itching (b) Plants used for the treatment of itching (c) Category of major compounds found in some of the itching plants (d) List of a few isolated compounds from the itching plants. All the plants have been arranged alphabetically by their scientific names. **Conclusion:**Only a small number of plants have been studied in well-designed clinical trials. Thus, in order to establish the active elements responsible for itching as well as the therapeutically active

*Corresponding author's E-mail: parikshitdas748@gmail.com

chemicals that alleviate itching, additional research with greater level of in-depth inquiry is required.

Keywords: Itch-Causing, Itch-relieving, Pruritus, Phytoconstituents

Introduction

Throughout history, humans have utilized plants for food, medicine, clothing, and protection. Through experience, humans have learned to identify and avoid plant species that cause undesirable consequences such as food poisoning, skin irritations, hay fever, and seasonal asthma, etc. Some of these human responses to plants are triggered by mechanical harm or by toxic or irritating plant components, and they occur in all individuals who come in contact with the plant. As plants are ubiquitous and possess a variety of harmful physical and chemical qualities, plant-related skin responses are common. It is estimated that 50% of occupational skin diseases in agriculture are caused by plants, trees, and natural vegetation.

Recent years have seen an increase in the number of allergic patients worldwide. Statistics from across the world have proven a high risk for skin diseases associated with plant contact. Therefore, plant-induced allergies are of increasing attention in medicine. Moreover, the increasing popularity of plant extracts in cosmetics (tonics, soaps, shampoos, creams) and massage or aromatherapy fragrance oils raises the chance of contact with hazardous substances. Multiple allergens have been identified and described, and their role in triggering the allergic reaction has been determined. However, because of the relatively little data available in the scientific literature concerning the common adverse effects of plants like itching, this current work was carried out to identify and document the allergens or compounds responsible for generating itching, which will serve as a valuable preventative tool when we come into contact with such plants that cause itching and discomfort. An exhaustive list of allergenic plant is essential for risk avoidance and the diagnosis of allergy reactions. In addition, a fundamental understanding of plant-induced allergic contact dermatitis and the common plants that produce each type can assist susceptible persons to identify the source of their dermatitis and thereby prevent reexposure.[1]

Itch, also known as pruritus, was defined by the German physician Samuel Hafenreffer 350 years ago as "an unpleasant sensation that induces the desire or impulse to scratch." Itch is a distressing everyday sensation that induces a desire to scratch. These conditions account for approximately 34% of all occupational diseases encountered globally. According to data on the prevalence of pruritus, 8-9 percent of individuals had acute pruritis at some point in their lives. Recent research

indicates that the prevalence of pruritis in the overall adult population is around 13.5%. Despite its prevalence, pruritus has only recently attracted significant attention [2]. Exciting developments in somatosensory physiology over the past decade have led us to recognize itching as a unique sensory modality within the somatosensory system (along with the other senses of pain, temperature, touch, and proprioception). Itch is encoded by genetically distinct neurons in both the peripheral nervous system (PNS) and the central nervous system (CNS). Yet itching also interacts with the other sensory modalities at various sites, from its beginning in a specific dermatome to its transmission to the brain, where it is finally experienced [3].

Herbal treatments have a long medical history and played a significant role in the spectacular medication advancements of the 1960s, beginning with basic initiatives such as the use of Withering's foxglove for cardiac problems and culminating with the discovery of reserpine from Rauwolfia in the 1960s. Numerous herbs have been proposed as corticosteroid-sparing medicines, which, if widely accepted, could offer an attractive alternative to the cutaneous adverse effects of strong topical corticosteroids. Alternative treatments for pruritus are a challenging problem. Currently, practitioners have limited access to FDA-approved (i.e., approved by the U.S. Food and Drug Administration (FDA) and listed in drug package inserts) medicines. The treatment of urticaria, which is traditionally one of the most severe pruritic disorders, or atopic dermatitis is frequently the closest one can approach to an indication for pruritus. Decades ago, Sulzberger referred to atopy as "the itch that rashes," thus the standard treatment for pruritus is indeed a fairly brief subject [4].

Materials and methods

Extensive literature search was carried out using search engines viz. PubMed, Scopus, Web of Science and Google Scholar from March 2022 to May 2022. A range of articles have been retrieved; some of the important articles have been selected to compile the ethnobotanical, phytochemical and pharmacological indications of plants.

Results

The information retrieved from various sources are categorized as (a) Plants causing itching (Table-1), (b) Plants used for the treatment of itching (Table-2), (c) Category of major compounds found in some of the itching plants (Table-3), (d) List of a few isolated compounds from the itching plants (Table-4).

All the plants have been arranged alphabetically by their scientific names, and are presented below.

S1.	Scientific	Common	Family	Plant	Constituents	Ref.
No.	name	name		part(s)		
		(English)		used		
1.	Urtica	Stinging	Urticace	Leaves	Histamine,	[6]
	dioica	nettle	ae	Stem	Acetylcholine,	
					Serotonin	
2.	Laportea	Wood	Urticace	Leaves	Terpenes and	[7]
	canadensi	nettle	ae	Stem	terpenoids.	
	S					
3.	Plumbago	Leadwort	Plumba	Sap,	Epi-	[8]
	auriculata		ginaceae	Leaves	isoshinanolon	
				Roots	e,	
					plumbagicacid	
					,	
4.	Toxicoden	Poison	Anacard	Leaves	Urushiol,	[9]
	dron	oak	iaceae	Barks	hydrourushiol,	
				Stems	pentadecylcat	
					echol	
5.	Colocasia	Taro	Araceae	Leaves	Calcium	[10]
	esulenta				minerals	
					calcium	
6.	Mangifer	Mango	Anacard	Fruits	Urushiol,	[11]
	a indica		iaceae	Exocar	Catechols	
				р		
7.	Toxicoden	Poison	Anacard	Fruits,	Urushiol	[12]
	dron	ivy	iaceae	Bark		
	radicans					
8.	Toxicoden	Poison	Anacard	Leaves	Urushiol	[13]
	dron	sumac	iaceae	Sap		
	vernix					
9.	Gluta	Hardwoo	Anacard	Stem	Urushiol	[14]
	renghas	d	iaceae	Bark	Catechols	
10.	Anacardi	Cashew	Anacard	Fruits	Cardol,	[15]
	ит	nut	iaceae	pericar	Anacardic	
	occidental			р	acid	
	е					

Table 1. Flams causing noning	Table 1	1:	Plants	causing	itching
-------------------------------	---------	----	--------	---------	---------

11.	Toxicoden	Lacquer	Anacard	Exocar	Urushiol	[16]
	dron	tree or	iaceae	р		
	verniciflu	varnish				
	ит	tree				
12.	Carica	Papaya	Caricace	Unripe	Papain	[17]
	рарауа		ae	fruits		
				latex		
13.	Ginkgo	Maidenha	Anacard	Flesh	Ginkgolic acid	[18]
	biloba	ir tree	iaceae	of the		
				ovule		
14.	Partheniu	Santa	Asterace	Fresh	Sesquiterpines	[19]
	т	Maria	ae	plants	, lactones.	
	hysteroph	feverfew		Pollen		
	orus					
15.	Walidda	Walida,	Apocyn	Flower	Sesquiterpines	[20]
	antidysent	artic snow	aceae		, lactone,	
	erica	milky				
		way				
16.	Helianthu	Sunflower	Asterace	Flower	Parthenin,Ses	[21]
	s annus		ae	pollen	quiterpine,	
					lactones	
17.	Dahlia	Pinnate	Asterace	Flower	Parthenin	[22]
	pinnata	dahlia	ae	pollen	Sesquiterpine	
					lactone	
18.	Mikania	Climbing	Asterace	Flower	Parthenin,	[23]
	scandens	hempwee	ae	,Pollen	Sesquiterpine	
		d			lactones	
19.	Holigarna	Black	Anacard	Fruits	Parthenin	[24]
	ferrugine	varnish	iaceae	leaves	Sesquiterpine	
	a				lactone	
20.	Hibiscus	OkraLady	Anacard	Stalks	Urushiol,	[25]
	esculentus	's finger	iaceae	Leaves	cellulose,	
					lignin,	
21.	Melanorr	Burmese	Anacard	Flower	Thitsiol,	[26]
	hoea	lacquer	iaceae	S	Phenols,	
	usitata			Leaves	Catechols	

22.	Allium	Garlic	Amaryll	Bulb	Alliin, Allicin,	[27]
	sativum		idaceae		Ajoenes,	
					Flavanoids	
23.	Heracleu	Giant	Apiacea	Sap	Alkaloids,	[28]
	т	hogweed	e	Leaves	Coumarins	
	mantegaz			Stalks		
	zianum					
24.	Plumeria	Frangipan	Apocyn	Leaves	Plumeride,	[29]
	rubra	i	aceae	flowers	Plumeric acid,	
					β-sterol	
25	Ricinus	Castor	Euphorb	seeds	Rutin,	[30]
	communis	bean	iaceae		Quercetin,	
					Gallic acid	
26	Laportea	-	Urticace	Leaves	12-Oleanane,	[31]
	crenulata		ae		β-sitosterol	
27	Mucuna	Velvet	Fabacea	Seed		[32]
	pruriens	bean	e	pods		
29	Euphorbi	Poinsettia	Euphorb	Young	Eupulcherol A	[33]
	а		iaceae	stem		
	pulcherri			Leaves		
	ma					
30	Phoebe	Phoebe	Laurace	Bark	-	-
	hainesian	(Uningtho	ae			
	а	u M)				

Table: 2 List of plants that relieve itching

S1.	Scientific	Common	Family	Plants	Method of	Constituents	Ref.
No.	Name	name		Part	use		
1	Carthamus	Wild	Asterac	Seed	Extracted	Oleic oil,	[34]
	oxyacantha	safflower	eae		oil is	linoleic oil.	
					applied on		
					the skin.		
2	Ricinus	Castor oil	Euphorb	Seed	Extracted	Ricinolic	[35]
	communis	plant	iaceae	oil	oil is gently	acid, stearic,	
	L.				applied	linoleic.	

r							
3	Fumaria	Fumitory	Papavar	Aerial	Decoction	Alkaloids:	[36]
	officinalis		aceae	parts	of the plant	protopines,	
					extract is	protopine,	
					taken	spirobenzyl	
					orally.		
4	Ziziphus	Wild	Rhamna	Fruit	Fruit juice	Palmitic	[37]
	nummulari	jujube	ceae	and	paste is	acid, linoleic	
	а			Leaf	gently	acid, stearic	
					applied.	acid,	
						squalene.	
5	Astragalus	Milkvetch	Fabacea	Aerial	Aerials	Palmitic,	[38]
	gossypinus		e	parts	parts are	stearic acid,	
					made paste	linoleic acid.	
					and applied		
6	Gallium	Lady's	Rubiace	Flowe	Dried plant	Caryophylla	[39]
	verum	bedstraw	ae	ring	parts are	ne oxide,	
				branch	used as flee	germacrene.	
					repellant.	-	
7	Solanum	Black	Solanac	Fruit	Fruits juice	Gallic acid,	[40]
	nigrum L.	nightshad	eae		is gently	catechin,	
		e			applied.	protocatechu	
						ic	
8	Verbascum	Great	Scorhal	Flowe	Heated	Acobin,	[41]
	53hapsus.	mullein	ariaceae	r	mullein	Polysacchari	
	М				leaves are	des:	
					applied	galactose,	
						arabinose	
9	Salix	Indian	Salacac	Arial	Decoction	Flavonols,	[42]
	elbursensis	willows	eae	parts	of aerial	flavones,	
	Boiss				parts are	flavonones,	
					taken		
					orally.		
10	Brassica	Wild	Brassica	Root	Dried	Arvelexin.	[43]
	rapa L.	mustard	ceae		powder is		
					applied		
11	Chrysanthe	Garland	Asterac	Leaf	Flower	Chrysanthgu	[44]
	тит	chrysanth	eae	Flowe	paste is	ainolide A,	
	coronarium	emum		r	gently	Chrysanthgu	
	L.				applied;	ainolide B	

					Leaf naste		
					is applied		
12	Cannahis	Gania	Connobi	1001/06	Loof posto		[45]
12	cannabis	Galija	Califiadi	leaves	is applied	Δ-IIIC (totrohydroco	[43]
	sauvus		naceae		is applied	(tetranyuloca	
					area	illiaoilloi)	
13	Mirabilis	Four	Notogin	Doots	Decostion	Britostarol	[46]
15	jalana	o'alock	netagili	ROOIS	of the roots	p-situsterol	[40]
	јшири	flower	aceae		in tokon	stigilla steror	
		nower			15 takeli		
14	Faloania	Sightawaa	Anicoro	Loof	Utally.	Comucomol	[47]
14	r alcaria	d	Aplacea	Leal	connliad the	Carvaciol,	[47]
	vuigaris Dami	u or	e	Seed	applied the	Spatulenul	
15	Bernn T	Complean	T	T	Inchy area	A 11	F 4 0 1
15	Teucrium	Garmand	Lumiac	Leaves	Infusion of	Alpha ·	[48]
	orientale	ers	eae		the leaves	pinene,	
					1s taken	Linalool,	
					orally.	Germacrene	
	-					D	
16	Rumex	Patience	Polygon	Aerial	Decoction	Dibutyl	[49]
	chalepensis	dock	aceae	parts	of the aerial	phthalate,	
	Mill.				parts is	Fleximel,	
					taken	Dodecane	
					orally.	12	
17	Aloe	Aloe vera	Xanthor	Leaf	Applied	Vitamin B^{12} ,	[50]
	barbadensi		rhoeace	gel	gently on	folic acid,	
	s miller		ae		the affected	choline	
					area.		
18	Curcuma	Turmeric	Zingiber	Rhizo	Used as	Turmeone,	[51]
	longa L.		aceae	me	paste	Atlanton,	
				powde		Zingiberone	
				r			
19	Echinaceae	Eastern		Aerial	Decoction	Cichoric,	[52]
	purpurea	purple	Asterac	parts	of the aerial	Caftaric,	
		coneflow	eae		parts is	Chlorogenic	
		er			taken	acids.	
					orally.		
20	Anagallis	Scarlet	Primula	Arial	Decoction	Arvenin,	[53]
	arvensis	pimpernel	ceae	parts	of the aerial	Anagalligeni	
					parts is	n, Fatty acid,	

					taken	Palpitic acid	
					orally	i uipitie ueiu	
21	Calendula	Pot	Asterac	Flowe	Flowers are	αβ-	[54]
	officinalis	marigold	eae	rs	dried and	amyrins.	[0.]
	L	mangora	cuc	10	powdered	Faradiol	
	2.1				and applied	Isorhmnetin	
2.2	Matricaria	German	Asterac	Flowe	Oil is	α-bisabolol	[55]
	recutita L	chamomil	eae	r	extracted	matricin	[00]
		e	cuc	-	gently	anigen	
		0			applied	luteolin	
23	Althaea	Marsh	Malvace	Roots	Infusion of	Mucilage	[56]
25	officinalis	mallow	20	Roots	the roots is	polysacchari	[50]
	I	IIIdiio w	ac		taken orally	des arabinog	
					to treat	alactans	
					itching	andetans	
24	Avenae	Oat fruit	Poaceae	Fruit	Decoction	B-glucan	[57]
27	fructus	Out Huit	1 ouccue	1 Tun	of roots in	Proteins gluti	[37]
	jrucius				water is	en avenin	
					used orally	flavonoids	
					to treat	navonolas.	
					itching		
25	Symphytum	Common	Boragin	Roots	Roots are	Amine	[58]
23	officinale	comfrey	aceae	Roots	crushed	compound.	[30]
	I	connicy	accae		and make	allantion	
	L.				into a pasta	nhenolic ,	
					into a paste	acide	
26	Salvia	Common	Lomiaco	Loovos	Decestion	Dhanalia	[50]
20	officinalis	COMMIN		Leaves	of the roots	acide	[39]
	ojjičinulis I	sage	ac		or takan	acius,	
	L.				orally		
27	Morus alba	Common	Moraca	Doots	Doots are	Sangganon	[60]
21	morus aibu	mulborry	worace	Roots	crushed	C	[00]
		mulberry	ae		and dried	C,	
						flavonoida	
20	Monus	Dlook	Morece	Doot	The roots	Mornigral D	[61]
20	niora	DIACK	Morace	KOOL,	and bork	Mornigioi D,	[01]
	nıgru	mulberry	at	Uark	and Uark	in	
					and uneu	111.	
					nowdered		
					powdered.		

29	Plantago	Ribwort	Plantagi	Leaves	Fresh	Acteoside,	[62]
	lanceolata	plantain	naceae		leaves are	plantamajosi	
	<i>L</i> .				made into	de.	
					paste and		
					applied		
30	Hypericum	St. John's	Hyphier	Flowe	Flowers are	Hyperforin,	[63]
	perforatum	wort	icaceae	r	washed and	hypericin,	
					dried		
31	Oenothera	Evening	Onagrac	Flowe	Decoction	γ-linolenic,	[64]
	oleum	primrose	eae	rs	of the	linoleic.	
		oil			flowers		
					with water.		
32	Quercus	Oak bark	Fagacae	Bark	Thebarkdri	Suberin,	[65]
	cortex				edpowderd	Lignin	
33	Linum	Flax	Linacea	Flowe	Fresh	Galacturonic	[66]
	usitatissim		e	r	flowers are	acid, α-	
	ит				boiled with	linolenic,	
					water	linoleic.	
34	Trigonellae	Sicklefrui	Fabacea	Seeds	Seeds are	Glycosides	[67]
	foenum-	t	e		crushed	Steroid	
	graecum	fenugreek			and mix	deriatives	
					with water		
35	Juglans	English	Jugland	Leaves	Decoction	Quercetin,	[68]
	regia L.	walnut	aceae		of the	isoquercitrin.	
					leaves is		
					taken orally		
36	Achillea	Common	Asterac	Flowe	flowers	Chamazulen	[69]
	millefolium	yarrow	eae	r	paste	e	
37	Hamamelid	Witch-	Hamam	Bark	Decoctions	Hamamelitan	[70]
	is	hazel	elidacea		&infusions	nis,	
	virginiana		e		ofbark are	proanthocya	
	L.				used.	nidis.	
38	Portulaca	Pigweed,1	Portulac	Leaves	Leaves are	Oleracimine,	[71]
	oleracea	ittle	aceae		crushed	oleracimine	
		hogweed,			and paste	A, oleracone	
					and applied	А,	
39	Sarco	Ashoka	Caesalpi	Flowe	Decoction	Gallic acid,	[72]
	asoca		naceae	r	of the	Oleic acid,	

					flowers are	Linoleic,	
					taken		
40	Lavandula	Lavender	Labiatae	Laven	Drops of	Cis-thujone,	[73]
	officinalis			der oil	essential oil	Camphor,	
					are applied	Cineole,	
41	Phyllanthu	Indian	Phyllant	Fruits	The fruits	Fisetin,	[74]
	s emblica	gooseberr	haceae		juice is	Gallic acid,	
		у				Ascorbic	
						acid	
42	Erythrina	Indian	Fabacea	Bark	The bark is		[75]
	stricta	carol tree	e		crushed		
					and paste		
					and applied		
43	Achyranthu	Pricklych	Amaran	Leaves	Decoction	Palmitic,	[76]
	s aspera	aff	thaceae	Roots	of the plant	Ricinoleic,	
					is taken	Oleic,	
					orally.	Myristic	
44	Phlogacant	Nees	Acantha	Leaves	Infusion of	Phloganthosi	[77]
	hus		ceae		the leaves	de,	
	thyrsiflorus				is taken	Pinusolidic	
					along with	acid, Betulin,	
					meals.		
45	Rhus	Wax tree	Anacard	Leaves	Decoction	Agathisflavo	[78]
	succedanea		iaceae		of the	ne,	
					leaves is	Robustaflavo	
					taken	ne,	
					orally.		
46	Azadiracht	Neem	Meliace	Leaves	Crushed	Azadirachti,	[79]
	a indica		ae		leaves	nimbolinin,n	
					withturmeri	imbin,	
					c powder	nimbididin,	
47	Strobilanth	Nees	Acantha	Young	Apply		[80]
	es scaber		ceae	leaf	extract		
48	Artemisia	Takai	Asterac	Leaves	Leaves are	Exiguaflavon	[81]
	indica wild		eae		crushed,pas	e A,	
					te and	Maackianin	
					applied		
49	Cinnamom	Camphor	Laurace	Bark	The bark is	(-)-Sesamin,	[82]
	ит	tree	ae		dried and	9α-,9β-	

	camphora				powdered	hydroxysesa	
						min	
50	Rubus	Jenbansu	Rosacea	Aerial	The aerial		
	lasinocarp	tong (N)		parts	parts are		
	us SM.				crushed,pas		
					te and		
					applied		
51	Solanum	African	Solanac		Decoction	Gallic acid,	[83]
	indicum	eggplant	eae	Leaves	of the	catechin,	
		Kotahi			leaves are	protocatechu	
		bengana			used.	ic acid,	
52	Solanum	Turkey	Solanac	Fruit	Fresh fruits	Torvanol A,	[84]
	torvum	berry	eae		are dried	Steroidal	
					and	glycoside,	
					powdered		
53	Pouzolzia	Wedd	Urticace	Young	shoots are		
	viminia		ae	shoot	grinded and		
					paste is		
					applied		
54	Lantana	Phukilap(Verbena	Leaves	Decoction	(E)-β-	[85]
	camara L.	S)	ceae		of the	caryophyllan	
					leaves is	e, α-	
					taken	humulene,	
					orally.		
55	Cayratia	Gagnep	Vitacea	Leaves	Leaves are	-	
	japonica	(thumb)	e		crushed,pas		
					te and		
					applied.		
56	Artemesia	Pamp	Asterac	Leaves	Leaves are	(z)-nerolidol,	[86]
	nilagiria		eae		crushed	1, 8-cineole,	
					and made	yomogi	
					into paste	alcohol,	
57	Terminalia	Ink nut	Combre	Leaves	Leaves are	-	
	reticulate		bretacea		crushed		
	roth		e		and made		
					into paste.		
58	Gynura	Okinawan	Asterac	Leaves	Fresh	hydroxybenz	[87]
	bicolor	spinach	eae		smashed	oic acid,	
					leaves are	protocatechu	

					applied	ic acid,	
59	Alstonia	Devil's	Apocyn	Stem	The stem	cycloeucalen	[88]
	scholaris	tree	aceae	bark	and bark	ol,Amyrin	
					are crushed	acetate,	
					and		
					powdered		
					and applied		
60	Bidens	Black-	Asterac	Leaves	Leaves are	1-	[89]
	biternata	jacks	eae		crushed,pas	phenylhepta-	
					te and	1,3,5-tryne	
					applied		
61	Euphorbia	Choti-	Euphorb	Whole	plant is	Rutin,	[90]
	thymifolia	dudhi	ieceae	plant	crushed,pas	Quercetin	
					te and		
					applied		
62	Geranium	Nepalese	Gerania	Whole	Mix	Kaempferol,	[91]
	nepalense	Crane's	ceae	plant	powder of	Kaempferol-	
		Bill			the plant	7-O-β-D-	
					and	glucopyranos	
					turmeric	ide	
					powder and		
					mustard oil		
					and apply		
63	Strychnos	A.W.Hill	Strychn	Leaves	Decoction	Strychnine,	[92]
	nux blanda		aceaea		of the	Brucine, α &	
					extract is	β - Colubrine,	
					applied	Vomicine,	

Table 3: Category of major compounds found in some of the itching plants

S1.	Scientific	Plant	Constituents	Reference
No.	name	part		
1.	Urtica dioica	Leaves	Amino acid, Organic	[93]
			acidSteroid, Terpenoids,	
			Faty acid, Phenolic	
			compounds	
2	Laportea	Leaves	Terpene/terpenoids, Fatty	[94]
	Canadensis		acid Tocopherols, Sterols,	

			Vitamin E	
3	Plumbago	Leaves	Plumbagin, α-Amyrin and α-	[95]
	auriculata		anyrin acetate, Capensisone,	
			Isoshinanoline	
4	Colocasia	Leaves	Starch, Mucilage	[96]
			Dihydroxystrols , Fats,	
			Calcium oxalate	
5	Carica papaya	Unripe	Alkaloids, Flavonoids,	[17]
		fruits	Amino acids.	
		latex		
6	Parthenium	Leaves	Flavonoids, Alkaloids	[19]
	hysterophorus		Terpenoids	
7	Helianthus	Flower	Flavanoids,	[21]
	annus	pollen	ProteinsCarbohydrates	
8	Dahlia pinnata	Flower	Flavanoids, Polyacetylenes	[22]
		pollen		
9	Mikania	Flower	Phytosterols, Terpenoids	[23]
	scandens	pollen	Flavanoids	
10	Holigarna	Leaves	Alkaloids, Phenols, Tannins	[24]
	ferruginea			
11	Walida	Flower	Alkaloids, Flavanoids,	[20]
	antidysenterica		Phenolics	
12	Ginkgo biloba	drupe	Carotenoids, triterpenes,	[18]
		like	polyprenol, flavonoids,	
		ovule	flavanols, Phenolics,	
			apigenin	
14	Pheobe	Bark	Alkaloids Terpenoids,	[97]
	hainesiana		Flavanoids, Lignans,	
			Steroids	
15	Euphorbia	Leaves	Alkaloids, Steroids,	[33]
	pulcherrima		Terpenoids, Saponins,	
			Amino acid	
16	Mucuna	Seed	Alkaloids, Flavanoids,	[32]
	pruriens	pods	Tannins, Phenolics	
17	Laportea	Leaves	Triterpenes, sterols,	[31]
	crenulata		Flavanoids, Ligans	
			Sesquiterpines,	
18	Ricinus	Outer Alkaloids, Saponin, Tannin		[35]
	communis	coating	Lignin, Protein,	

		of	Carbohydrate, Suberin,	
		seeds	Glycoside, Steroids	
19	Plumeria	Leaves	Iridoids, Terpenoids,	[29]
	rubra		Flavanoids, Alkaloids	

Table 4: List of a few isolated compounds from the itching plants

S1.	Scientific	Compound isolated	Extracting	Ref.
No	name		solvent	
1.	Urtica	Quercetin-3-O-rutinoside,	Methanol	[98]
	dioica	kaempherol-3-O-rutinoside,	70%	99]
		isorhannetin-3-O-	ethanol	
		glucosidePeonidin-3-O-		
		rutinoside, rosinidine-3-O-	Ethyl	[100]
		rutinosiode, Peonidine-3-O- (p-	acetate	
		coumaroyl glucoside), Diocanol,		
		β -Amyrin, β -sitosterol,		
		stigmasterol, oleanolic acid.		
2	Mangifera	Mangiferolate B, isoambolic acid,	Methanol	[101]
	indica	(-)-epicatechin-3- <i>O</i> -β-		
		glucopyranoside, 5-hydroxy-3-(4-		
		hydroxylphenyl) pyrano[3,2-g]	Methanol	[102]
		chromene-4(8H)-one, quercetin-		
		3- <i>O</i> - α -glucopyranosyl- $(1 \rightarrow 2)$ - β -		
		D-glucopyranoside, (–)-		
		epicatechin(2-(3,4-		
		dihydroxyphenyl)-3,4-dihydro-		
		2H-chromene-3,5,7-triol,		
3	Colocasia	hexadecanoic acid methyl ester,	Methanol/c	[103]
	esculenta	octadecanoic acid, 9,12-	hloroform	
		octadecadienoyl chloride, 11-		
		octadecenoic acid methyl ester,	Ethyl	[104]
		9-octadecenoic acid, 3-	acetate, n-	
		hexadecyloxycarbonyl-5-(2-	butanol	
		hydroxylethyl)-4-		
		methylimidazolium, hexanedioic		
		acid, bis(2-ethylhexyl)ester, 3,5-		
		di-t-butyl phenol. 1-O-feruloyl-d-		
		glucoside, 1-O-caffeoyl-d-		
		glucoside.		

Fig 1: Plant parts causing itching

Fig 2: Plants belonging to different families that cause itching

Fig 3: Plants that relieve itching

Fig 4: Families of Plants that relieve itching

[E]

[G]

 $[\mathbf{A}]$

[H]

[B]

Fig. 5: [A] Aloe barbadensis [B] Hibiscus esculentus [C] Curcuma longa [D] Phyllanthus emblica [E] Colocasia esulenta [F] Azadirachta indica [G] Helianthus annus [H] Dahlia pinnata [I] Cannabis sativus [J] Carica papaya [K] Solanum indicum [L] Phlogacanthus thyrsiformis.

Conclusion

Itchy skin is one of the most prevalent complaints, which forces people to visit a dermatologist for relief or treatment. Itchy skin can be a symptom of a variety of ailments and diseases, including skin, kidney, liver, dermato-physical, celiac, thyroid, and insect bites. Finally, research suggests that several chemical mediators and signalling pathways, such as 5-hydroxytryptamine, proteases, opioid peptides, and peptides, have a substantial influence on the mechanism of itch. This is due to the large variety of reasons and disorders that produce itching. Due to their active components, medicinal plants have positive impacts on human health and have a therapeutic effect on many body organs and disorders.

Different plant parts such as rhizomes, root, stem, flowers, fruit, bark, seed, seed oil, buds, latex, and whole plant parts etc. are responsible for causing itching. Also, widely used to relieve itching in which their preparation methods and administration differ significantly. A variety of administration methods include paste, decoctions, infusions, ointments, oils, poultices, tars, tinctures, unguents, and dried

preparations. This work contributes to the existing body of knowledge by identifying the chemical components involved in causing and relieving itching.

Thirty plants which cause itching belonging to 12 families are reported in this study (table 1). Out of those plants, the families most represented were Anacardiaceae (11) followed by Asteraceae (5), Urticaceae (3), Euphorbiaceae (2), and Apocynaceae (2). Leaves (11) recorded as the most common plant parts that causes itching, followed by flowers (8), stem (6), fruits (5), bark (4), sap (3), roots (2), and stalk (2) (table 1).

Among the sixty-three medicinal plants belonging to 45 families that alleviate itching (table 2), it has been revealed that Asteraceae (8) is the most prevalent family that alleviates itching, followed by Fabaceae (3), Moraceae (2), Acanthaceae (2), and Solanaceae (2). Leaves (22) recorded as the most utilized plant (table 1). Leaves are the main photosynthetic part of plants which manufactures and store a wide range of chemical compounds that possesses numerous therapeutic value. Furthermore, following the leaves were the fruits (5), root (8) aerial (5), flower (5), bark (5), and seed (3). There are various methods of preparation like infusion, decoction, raw, maceration, mash, fresh application, powdering, paste, chewing (gum), crushing, lotion, ointment tincture where the most commonly used method of preparation was found to be paste, mash, crush, decoction and maceration.

It has been proven that some types of food ingredients are capable of mediating or interfering with the complex chemical interactions involved in life processes, in addition to providing the body with energy and aiding in repairs. These "non-nutritional" exogenous biochemicals (alkaloids, flavonoids, terpenes, glycosides) have therapeutic potentials comparable to those of plant isolates that are inedible or toxic. It is so remarkable that in the hunt for potentially useful therapeutic plants, a great deal of focus is placed on hard poisonous substances that conform to the modern conception of medications as necessarily 'poisons that in modest quantities could treat ailments.

Since these phytotherapeutic compounds play such critical roles in clinical medicine, it is crucial to investigate them. It is of utmost clinical importance to determine the acute and chronic toxicity of plant products used as therapeutic agents, regardless of whether or not they exhibit the anticipated pharmacological action when studying medicinal plants because adverse effects are sometimes observed with plant drugs.

Conclusion

Itching or pruritus can be incapacitating and extremely challenging to treat efficiently. Despite the use of numerous systemic and topical conventional medications for the treatment of pruritis, the need for more effective drugs with a lower incidence of adverse effects remains apparent. Herbal treatment for pruritic disorders has been utilized for millennia. In the present study, we compiled a list of plants and their bioactive constituents for the treatment of pruritus, with the potential for future research on these herbs as antipruritic drugs. Although many plants are claimed as treatments for pruritus, only a small number have been studied in well-designed clinical trials. Thus, in order to establish the active elements responsible for itching as well as the therapeutically active chemicals that alleviate itching, additional research with a greater level of in-depth inquiry is required.

Conflict of Interest

The authors declare no conflicting interests.

References

- Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H (2018) Medicinal plants: Past history and future perspective. *Journal of Herbmed Pharmacology* 7(1): 1-7.
- Goyal S, Aggarwal K, Gupta M (2014) Menaging prutitus: A therapeutic challenge. *IndoAmerican Journal of PharmaceuticalResearch* 4:2557-2562.
- Ji TF, Liu CH, Wang AG, Yang JB, Su YL, Yuan L, Feng XZ. Studies on the chemical constituents of Urtica dioica L. Grown in Tibet Autonomous Region. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials. 2007 1;30(6):662-4.
- Vogl O, Mitchell JD. Oriental lacquer. 11. Botany and chemistry of the active components of poisonous Anacardiaceae. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 1996 1;33(10):1581-99.
- 5. Zuharah WF, Yousaf A, Ooi KL, Sulaiman SF. Larvicidal activities of family Anacardiaceae on Aedes mosquitoes (Diptera: Culicidae) and

identification of phenolic compounds. Journal of King Saud University-Science. 2021 1;33(5):101471.

- Akbar S. Wrightia tinctoria R. Br.(Apocynaceae). Inhandbook of 200 Medicinal Plants 2020 (pp. 1951-1956). Springer, Cham.
- Etievant PX, Azar M, Pham-Delegue MH, Masson CJ. Isolation and identification of volatile constituents of sunflowers (Helianthus annuus L.). Journal of Agricultural and Food Chemistry. 1984 May;32(3):503-9.
- Wang DC, Qiu DR, Shi LN, Pan HY, Li YW, Sun JZ, Xue YJ, Wei DS, Li X, Zhang YM, Qin JC. Identification of insecticidal constituents of the essential oils of Dahlia pinnata Cav. Against Sitophilus zeamais and Sitophilus oryzae. Natural Product Research. 2015 17;29(18):1748-51.
- Siddiqui SA, Islam R, Islam R, Jamal AH, Parvin T, Rahman A. Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arabian Journal of Chemistry. 2017 1;10:S2170-4.
- Kalase VL, Jadhav VD. Pharmacognostical evaluation of leaf of Holigarna grahamii (wight) kurz: an Endemic plant to western ghats. Asian J Pharm Clin Res. 2013;6(2):105-8.
- 11. Hu L, Yu W, Li Y, Prasad N, Tang Z. Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. Biomed research international. 2014 27;2014.
- Rong L, Yukio K, Tetsuo M. Characterization of lipid components of Melanorrhoea usitata lacquer sap. Talanta. 2007 15;71(4):1536-40.
- El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YH, A. Al-Sagan A, Abd El-Hack ME, Taha AE, M. Abd-Elhakim Y, Prasad Devkota H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020 24;12(3):872.
- 14. Tkachenko KG. Constituents of essential oils from fruit of some Heracleum L. Species. Journal of essential oil research. 1993 1;5(6):687-9.

- Hamburger MO, Cordell GA, Ruangrungsi N. Traditional medicinal plants of Thailand XVII Biologically active constituents of Plumeria rubra. Journal of ethnopharmacology. 1991 1;33(3):289-92.
- Ribeiro PR, de Castro RD, Fernandez LG. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: A review. Industrial Crops and Products. 2016 30;91:358-76.
- Khan A, Haque E, Rahman MM, Mosaddik A, Rahman M, Sultana N. A new triterpenoid from roots of Laportea crenulata and its antifungal activity. Natural Product Research. 2007 1;21(11):959-66.
- Misra L, Wagner H. Alkaloidal constituents of Mucuna pruriens seeds. Phytochemistry. 2004 1;65(18):2565-7.
- Khafagy S, Nazmi N, Salam NA, Eldin AS. Steroid, triterpenoid, and flavonoid constituents of Euphorbia pulcherrima Villd. Leaves. Acta Pharmaceutica Jugoslavica. 1980;30(2):103-7.
- Chakradhari S, Perkons I, Mišina I, Sipeniece E, Radziejewska-Kubzdela E, Grygier A, Rudzińska M, Patel KS, Radzimirska-Graczyk M, Górnaś P. Profiling of the bioactive components of safflower seeds and seed oil: Cultivated (Carthamus tinctorius L.) Vs. Wild (Carthamus oxyacantha M. Bieb.). European Food Research and Technology. 2020;246(3):449-59.
- Ribeiro PR, de Castro RD, Fernandez LG. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: A review. Industrial Crops and Products. 2016 30;91:358-76.
- 22. Al-Snafi AE. Constituents and pharmacology of Fumaria officinalis-A review. IOSR Journal of Pharmacy. 2020;10(1):17-25.
- Mesmar J, Abdallah R, Badran A, Maresca M, Shaito A, Baydoun E. Ziziphus nummularia: A Comprehensive Review of Its Phytochemical Constituents and Pharmacological Properties. Molecules. 2022 ;27(13):4240.
- 24. ASGARI NM, Atri M, Nazem H. Flavonoid components variability of Astragalus gossypinus as a medicinal species in the west of Iran.

- 25. Zhao C, Shao J, Cao D, Zhang Y, Li X. Chemical constituents of Galium verum. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2009 1;34(21):2761-4.
- Gogoi P, Islam M. Phytochemical screening of Solanum nigrum L and S. Myriacanthus Dunal from districts of upper Assam, India. IOSR J Pharm. 2012;2(3):455-9.
- Bileflimi VT. Chemical constituents of Verbascum L. Species. Fabad J. Pharm. Sci. 2004;29:93-107.
- Tawfeek N, Mahmoud MF, Hamdan DI, Sobeh M, Farrag N, Wink M, El-Shazly AM. Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: an updated review. Frontiers in pharmacology. 2021 12;12:593856.
- 29. Paul S, Geng CA, Yang TH, Yang YP, Chen JJ. Phytochemical and health-beneficial progress of turnip (Brassica rapa). Journal of food science. 2019;84(1):19-30.
- Basta A, Pavlović M, Couladis M, Tzakou O. Essential oil composition of the flowerheads of Chrysanthemum coronarium L. From Greece. Flavour and fragrance journal. 2007 May;22(3):197-200.
- Elsohly M, Gul W. Constituents of Cannabis sativa. Handbook of cannabis. 2014 21;3:1093.
- 32. Siddiqui S, Siddiqui BS, Adil Q, Begum S. Constituents of Mirabilis jalapa. Fitoterapia. 1990;61(5).
- Khanahmadi M, Shahrezaei F. Study on Chemical Constituents of the Essential Oil of Falcaria vulgaris Bernh. Journal of Medicinal plants. 2007 10;6(23):52-7.
- 34. Küçük M, Güleç C, Yaşar A, Üçüncü O, Yaylı N, Coşkunçelebi K, Terzioğlu S, Yaylı N. Chemical Composition and Antimicrobial Activities of the Essential Oils of Teucrium chamaedrys. Subsp. Chamaedrys., T. Orientale. Var. Puberulens., and T. Chamaedrys. Subsp. Lydium. Pharmaceutical biology. 2006 1;44(8):592-9.

- 35. Kasimala MB, Tukue M, Ermias R. Phytochemical screening and antibacterial activity of two common terresterial medicinal plants Ruta chalepensis and Rumex nervosus. Bali medical Journal. 2014;3(3):116-21.
- 36. Zhong J, Huang Y, Ding W, Wu X, Wan J, Luo H. Chemical constituents of Aloe barbadensis Miller and their inhibitory effects on phosphodiesterase-4D. Fitoterapia. 2013 Dec 1;91:159-65.
- Niranjan A, Prakash D. Chemical constituents and biological activities of turmeric (Curcuma longa l.)-a review. Journal of Food Science and Technology. 2008 1;45(2):109.
- 38. Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, Kayir O. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of E chinacea purpurea (L.) M oench and E chinacea pallida (N utt.) N utt. Journal of Food Biochemistry. 2015 ;39(5):622-30.
- 39. Saleem H, Zengin G, Ahmad I, Htar TT, Naidu R, Mahomoodally MF, Ahemad N. Therapeutic propensities, phytochemical composition, and toxicological evaluation of Anagallis arvensis (L.): a wild edible medicinal food plant. Food Research International. 2020 1;137:109651.
- 40. Muley BP, Khadabadi SS, Banarase NB. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Tropical journal of pharmaceutical research. 2009;8(5).
- Sashidhara KV, Verma RS, Ram P. Essential oil composition of Matricaria recutita L. From the lower region of the Himalayas. Flavour and Fragrance Journal. 2006;21(2):274-6.
- 42. Al-Snafi AE. The pharmaceutical importance of Althaea officinalis and Althaea rosea: A review. Int J Pharm Tech Res. 2013 ;5(3):1387-5.
- 43. Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine—A Review. International Journal of Molecular Sciences. 2021 4;22(19):10746.

- Furuya T, Araki K. Studies on constituents of crude drugs. I. Alkaloids of Symphytum officinale Linn. Chemical and Pharmaceutical Bulletin. 1968 25;16(12):2512-6.
- 45. Mocan A, Babotă M, Pop A, Fizeşan I, Diuzheva A, Locatelli M, Carradori S, Campestre C, Menghini L, Sisea CR, Sokovic M. Chemical constituents and biologic activities of sage species: A comparison between salvia officinalis 1., s. Glutinosa 1. And s. Transsylvanica (schur ex griseb. & schenk) schur. Antioxidants. 2020 ;9(6):480.
- 46. Doi K, Kojima T, Makino M, Kimura Y, Fujimoto Y. Studies on the constituents of the leaves of Morus alba L. Chemical and pharmaceutical bulletin. 2001;49(2):151-3.
- 47. Majinda RR, Mazimba O, Motlhanka D. Antioxidant and antibacterial constituents from Morus nigra.
- Abate L, Bachheti RK, Tadesse MG, Bachheti A. Ethnobotanical Uses, Chemical Constituents, and Application of Plantago lanceolata L. Journal of Chemistry. 2022.
- Nahrstedt A, Butterweck V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry. 1997, 30(S 2):129-34.
- Edwards SE, da Costa Rocha I, Williamson EM, Heinrich M. Evening primrose (Oil) Oenothera biennis L. Phytopharmacy: An Evidence-Based Guide to Herbal Medicinal Products. 2015, 144-50.
- 51. Lorenz P, Heinrich M, Garcia-Käufer M, Grunewald F, Messerschmidt S, Herrick A, Gruber K, Beckmann C, Knoedler M, Huber R, Steinborn C. Constituents from oak bark (Quercus robur L.) Inhibit degranulation and allergic mediator release from basophils and mast cells in vitro. Journal of ethnopharmacology. 2016;194:642-50.
- 52. Qiu SX, Lu ZZ, Luyengi L, Lee SK, Pezzuto JM, Farnsworth NR, Thompson LU, Fong HH. Isolation and characterization of flaxseed (Linum usitatissimum) constituents. Pharmaceutical biology. 1999 ;37(1):1-7.

- 53. Rashmi Y, Rahul K. A study of phytochemical constituents and pharmacological actions of Trigonella foenum-graecum: A review. International journal of pharmacy and technology. 2011;3(2).
- Jahanban-Esfahlan A, Amarowicz R. Walnut (Juglans regia L.) Shell pyroligneous acid: chemical constituents and functional applications. RSC advances. 2018;8(40):22376-91.
- 55. Afsharypuor S, Asgary S, Lockwood GB. Volatile constituents of Achillea millefolium L. Ssp. Millefolium from Iran. Flavour and fragrance Journal. 1996.
- 56. Abbas TF, Abbas MF, Lafta AJ. Antibacterial activity and medical properties of Witch Hazel Hamamelis virginiana. Annals of Tropical Medicine and Public Health. 2020.
- 57. Yang ZJ, Zheng YN, Xiang L. Study on chemical constituents of Portulaca oleracea. Zhong yao cai= Zhongyaocai= Journal of Chinese medicinal materials. 2007.
- 58. Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacognosy reviews. 2014.
- Hassanpouraghdam MB, Hassani A, Vojodi L, Asl BH, Rostami A. Essential oil constituents of Lavandula officinalis Chaix. From Northwest Iran. Chemija. 2011.
- Habib-ur-Rehman, Yasin KA, Choudhary MA, Khaliq N, Atta-ur-Rahman, Choudhary MI, Natural Product Research. 2007.
- Hussain MM, Tuhin MT, Akter F, Rashid MA. Constituents of Erythrinaa potential source of secondary metabolities: a review. Bangladesh Pharmaceutical Journal. 2016.
- 62. Ghimire K, Banerjee J, Gupta AK, Dahal P. A Review. World journal of pharmaceutical research. 2015;4(1):470-89.
- Gogoi B, Kakoti BB, Bora NS, Goswami AK. Phytochemistry and International Journal of Pharmaceutical Sciences Review and Research. 2013;23(2):175-9.

- Matsuda H. Studies on the constituents of the leaves of Rhus and of some species of related genera in Japan. Chemical and Pharmaceutical Bulletin. 1966.
- 65. Siddiqui S, Faizi S, Siddiqui BS. Constituents of Azadirachta indica: isolation and structure elucidation of a new antibacterial tetranortriterpenoid, mahmoodin, and a new protolimonoid, naheedin. Journal of Natural Products. 1992.
- 66. Evaluation of Chemical Constituents and Pharmacological Activities of Acanthaceae Plants-Strobilanthes formosanus Moore and Hypoestes purpurea R. Brown." phd diss., 1992.
- 67. Rashid S, Rather MA, Shah WA, Bhat BA. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food chemistry. 2013.
- 68. Jayaprakasha GK, Ohnishi-Kameyama M, Ono H, Yoshida M, Jaganmohan Rao L. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. Journal of agricultural and food chemistry. 2006 -9.
- Deb PK, Ghosh R, Chakraverty R, Debnath R, Das L, Bhakta T. Phytochemical and pharmacological evaluation of fruits of Solanum indicum Linn. Int. J. Pharm. Sci. Rev. Res. 2014.
- 70. Yuan-Yuan LU, Jian-Guang LU, Ling-Yi KO. Chemical constituents from Solanum torvum. Chinese Journal of Natural Medicines. 2011.
- Kumar D, Kumar A, Prakash O. Pharmacognostic study of Lantana camara Linn. Root. Asian Pacific Journal of Tropical Disease. 2012 Jan 1;2:S42-5.
- 72. Uniyal GC, Singh AK, Shah NC, Naqvi AA. Volatile constituents of Artemisia nilagirica. Planta medica. 1985.
- 73. Chen J, Mangelinckx S, Adams AN, Li WL, Wang ZT, De Kimpe N. Chemical constituents from the aerial parts of Gynura bicolor. Natural product communications. 2012 1934578X1200701203.

- 74. Ragasa CY, Batarra TC, Tan MC, van Altena IA. Chemical constituents of Alstonia scholaris (L.) R. Br. Der Pharma Chemica. 2016;8(20):193.
- 75. Lima Silva F, Fischer DC, Fechine Tavares J, Sobral Silva M, Filgueiras de Athayde-Filho P, Barbosa-Filho JM. Compilation of secondary metabolites from Bidens pilosa L. Molecules. 2011.
- 76. Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacognosy reviews. 2010.
- 77. Ismail M, Ibrar M, Iqbal Z, Hussain J, Hussain H, Ahmed M, Ejaz A, Choudhary MI. Chemical constituents and antioxidant activity of Geranium wallichianum. Records of Natural Products. 2009;3(4):193.
- 78. Sichaem J, Tip-Pyang S, Lugsanangarm K, My LD. Strychnuxinal, A New Alkaloid from Strychnos nux-blanda Fruits. Natural Product Communications. 2018.
- 79. Ji TF, Liu CH, Wang AG, Yang JB, Su YL, Yuan L, Feng XZ. Studies on the chemical constituents of Urtica dioica L. Grown in Tibet Autonomous Region. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials. 2007.
- Sinville RD, Alfs MG, Dimick Gray SM. Phytochemical Investigation of Pilea pumila (Clearweed), Three Members of the Urticaceae Family. Natural Product Communications. 2022 17(2):1934578X221080978.
- Van der Vijver LM, Lötter AP. The constituents in the roots of Plumbago auriculata Lam. And Plumbago zeylanica L. Responsible for antibacterial activity. Planta medica. 1971.
- Li HM, Hwang SH, Kang BG, Hong JS, Lim SS. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. Molecules. 2014.
- Kumar Semwal D, Badoni Semwal R. Ethnobotany, pharmacology and phytochemistry of the genus Phoebe (Lauraceae). Mini-Reviews in Organic Chemistry. 2013.

- Nguyen HX, Le TC, Do TN, Le TH, Nguyen NT, Nguyen MT. A-Glucosidase inhibitors from the bark of Mangifera mekongensis. Chemistry Central Journal. 2016.
- 85. Kanwal Q, Hussain I, Latif Siddiqui H, Javaid A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) Leaves. Natural Product Research. 2010.
- Eleazu CO. Characterization of the natural products in cocoyam (Colocasia esculenta) using GC–MS. Pharmaceutical biology. 2016.
- Li HM, Hwang SH, Kang BG, Hong JS, Lim SS. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. Molecules. 2014.

How to cite this article:

Shimray S T, Sharma H K. A review on: Itch-causing and itch-relieving plants, *Curr Trends Pharm Res*, 2022;9 (1): 47-77.